
Control Structures

Table of contents

1 Embedded Pig - Python, JavaScript and Groovy...2

2 Embedded Pig - Java ...17

3 Pig Macros... 19

4 Parameter Substitution... 25

Copyright © 2007 The Apache Software Foundation. All rights reserved.

1. Embedded Pig - Python, JavaScript and Groovy

To enable control flow, you can embed Pig Latin statements and Pig commands in the
Python, JavaScript and Groovy scripting languages using a JDBC-like compile, bind, run
model. For Python, make sure the Jython jar is included in your class path. For JavaScript,
make sure the Rhino jar is included in your classpath. For Groovy, make sure the groovy-all
jar is included in your classpath.

Note that host languages and the languages of UDFs (included as part of the embedded Pig)
are completely orthogonal. For example, a Pig Latin statement that registers a Python UDF
may be embedded in Python, JavaScript, or Java. The exception to this rule is "combined"
scripts – here the languages must match (see the Advanced Topics for Python, Advanced
Topics for JavaScript and Advanced Topics for Groovy).

1.1. Invocation Basics

Embedded Pig is supported in batch mode only, not interactive mode. You can request that
embedded Pig be used by adding the --embedded option to the Pig command line. If this
option is passed as an argument, that argument will refer to the language Pig is embedded in,
either Python, JavaScript or Groovy. If no argument is specified, it is taken to refer to the
reference implementation for Python.

Python

$ pig myembedded.py

Pig will look for the #!/usr/bin/python line in the script.

#!/usr/bin/python

explicitly import Pig class
from org.apache.pig.scripting import Pig

COMPILE: compile method returns a Pig object that represents the pipeline
P = Pig.compile("a = load '$in'; store a into '$out';")

input = 'original'
output = 'output'

BIND and RUN
result = P.bind({'in':input, 'out':output}).runSingle()

if result.isSuccessful() :
print 'Pig job succeeded'

Control Structures

Page 2
Copyright © 2007 The Apache Software Foundation. All rights reserved.

udf.html#jython-advanced
udf.html#js-advanced
udf.html#js-advanced
udf.html#groovy-advanced

else :
raise 'Pig job failed'

JavaScript

$ pig myembedded.js

Pig will look for the *.js extension in the script.

importPackage(Packages.org.apache.pig.scripting.js)

Pig = org.apache.pig.scripting.js.JSPig

function main() {
input = "original"
output = "output"

P = Pig.compile("A = load '$in'; store A into '$out';")

result = P.bind({'in':input, 'out':output}).runSingle()

if (result.isSuccessful()) {
print("Pig job succeeded")

} else {
print("Pig job failed")

}
}

Groovy

$ pig myembedded.groovy

Pig will look for the *.groovy extension in the script.

import org.apache.pig.scripting.Pig;

public static void main(String[] args) {
String input = "original"
String output = "output"

Pig P = Pig.compile("A = load '\$in'; store A into '\$out';")

result = P.bind(['in':input, 'out':output]).runSingle()

if (result.isSuccessful()) {
print("Pig job succeeded")

} else {
print("Pig job failed")

}
}

Control Structures

Page 3
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Invocation Process

You invoke Pig in the host scripting language through an embedded Pig object.

Compile: Compile is a static function on the Pig class and in its simplest form takes a
fragment of Pig Latin that defines the pipeline as its input:

COMPILE: complie method returns a Pig object that represents the pipeline
P = Pig.compile("""A = load '$in'; store A into '$out';""")

Compile returns an instance of Pig object. This object can have certain values undefined. For
example, you may want to define a pipeline without yet specifying the location of the input
to the pipeline. The parameter will be indicated by a dollar sign followed by a sequence of
alpha-numeric or underscore characters. Values for these parameters must be provided later
at the time bind() is called on the Pig object. To call run() on a Pig object without all
parameters being bound is an error.

Bind: Resolve the parameters during the bind call.

input = "original”
output = "output”

BIND: bind method binds the variables with the parameters in the pipeline
and returns a BoundScript object
Q = P.bind({'in':input, 'out':output})

Please note that all parameters must be resolved during bind. Having unbound parameters
while running your script is an error. Also note that even if your script is fully defined during
compile, bind without parameters still must be called.

Run: Bind call returns an instance of BoundScript object that can be used to execute the
pipeline. The simplest way to execute the pipeline is to call runSingle function. (However, as
mentioned later, this works only if a single set of variables is bound to the parameters.
Otherwise, if multiple set of variables are bound, an exception will be thrown if runSingle is
called.)

result = Q.runSingle()

The function returns a PigStats object that tells you whether the run succeeded or failed. In
case of success, additional run statistics are provided.

Embedded Python Example

A complete embedded example is shown below.

Control Structures

Page 4
Copyright © 2007 The Apache Software Foundation. All rights reserved.

#!/usr/bin/python

explicitly import Pig class
from org.apache.pig.scripting import Pig

COMPILE: compile method returns a Pig object that represents the pipeline
P = Pig.compile("""A = load '$in'; store A into '$out';""")

input = "original”
output = "output”

BIND: bind method binds the variables with the parameters in the pipeline
and returns a BoundScript object
Q = P.bind({'in':input, 'out':output})

In this case, only one set of variables is bound to the pipeline,
runSingle method returns a PigStats object.
If multiple sets of variables are bound to the pipeline, run method
instead must be called and it returns
a list of PigStats objects.
result = Q.runSingle()

check the result
if result.isSuccessful():

print "Pig job succeeded"
else:

raise "Pig job failed"

OR, SIMPLY DO THIS:

#!/usr/bin/python

explicitly import Pig class
from org.apache.pig.scripting import Pig

in = "original”
out = "output”

implicitly bind the parameters to the local variables
result= Pig.compile("""A = load '$in'; store A into
'$out';""").bind().runSingle()

if result.isSuccessful():
print "Pig job succeeded"

else:
raise "Pig job failed"

1.2. Invocation Details

All three APIs (compile, bind, run) discussed in the previous section have several versions
depending on what you are trying to do.

Control Structures

Page 5
Copyright © 2007 The Apache Software Foundation. All rights reserved.

1.2.1. Compile

In its basic form, compile just takes a Pig Latin fragment that defines the pipeline as
described in the previous section. Additionally, the pipeline can be given a name. This name
is only used when the embedded script is invoked via the PigRunner Java API (as discussed
later in this document).

P = Pig.compile("P1", """A = load '$in'; store A into '$out';""")

In addition to providing Pig script via a string, you can store it in a file and pass the file to the
compile call:

P = Pig.compileFromFile("myscript.pig")

You can also name a pipeline stored in the script:

P = Pig.compileFromFile("P2", "myscript.pig")

1.2.2. Bind

In its simplest form, bind takes no parameters. In this case, an implicit bind is performed; Pig
internally constructs a map of parameters from the local variables specified by the user in the
script.

Q = P.bind()

Finally, you might want to run the same pipeline in parallel with a different set of parameters,
for instance for multiple dates. In this case, bind function, needs to be passed a list of maps
with each element of the list containing parameters for a single invocation. In the example
below, the pipeline is run for the US, the UK, and Brazil.

P = Pig.compile("""A = load '$in';
B = filter A by user is not null;
...
store Z into '$out';

""")

Q = P.bind([{'in':'us_raw','out':'us_processed'},
{'in':'uk_raw','out':'uk_processed'},
{'in':'brazil_raw','out':'brazil_processed'}])

results = Q.run() # it blocks until all pipelines are completed

for i in [0, 1, 2]:

Control Structures

Page 6
Copyright © 2007 The Apache Software Foundation. All rights reserved.

result = results[i]
... # check result for each pipeline

1.2.3. Run

We have already seen that the simplest way to run a script is to call runSingle without any
parameters. Additionally, a Java Properties object or a file containing a list of properties can
be passed to this call. The properties are passed to Pig and a treated as any other properties
passed from command line.

In a jython script

from java.util import Properties
... ...

props = Properties()
props.put(key1, val1)
props.put(key2, val2)
... ...

Pig.compile(...).bind(...).runSingle(props)

A more general version of run allows to run one or more pipelines concurrently. In this case,
a list of PigStats results is returned – one for each pipeline run. The example in the previous
section shows how to make use of this call.

As the case with runSingle, a set of Java Properties or a property file can be passed to the
call.

1.2.4. Passing Parameters to a Script

Inside your script, you can define parameters and then pass parameters from command line to
your script. There are two ways to pass parameters to your script:

1.2.4.1. 1. -param

Similar to regular Pig parameter substitution, you can define parameters using
-param/–param_file on Pig's command line. This variable will be treated as one of the
binding variables when binding the Pig Latin script. For example, you can invoke the below
Python script using: pig –param loadfile=student.txt script.py.

#!/usr/bin/python
from org.apache.pig.scripting import Pig

P = Pig.compile("""A = load '$loadfile' as (name, age, gpa);
store A into 'output';""")

Control Structures

Page 7
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Q = P.bind()

result = Q.runSingle()

1.2.4.2. 2. Command line arguments

Currently this feature is only available in Python and Groovy. You can pass command line
arguments (the arguments after the script file name) to Python. These will become sys.argv in
Python and will be passed as main's arguments in Groovy. For example: pig script.py
student.txt. The corresponding script is:

#!/usr/bin/python
import sys
from org.apache.pig.scripting import Pig

P = Pig.compile("A = load '" + sys.argv[1] + "' as (name, age, gpa);" +
"store A into 'output';");

Q = P.bind()

result = Q.runSingle()

and in Groovy, pig script.groovy student.txt:

import org.apache.pig.scripting.Pig;

public static void main(String[] args) {

P = Pig.compile("A = load '" + args[1] + "' as (name, age, gpa);" +
"store A into 'output';");

Q = P.bind()

result = Q.runSingle()
}

1.3. PigRunner API

Starting with Pig 0.8, some applications such as Oozie workflow invoke Pig using the
PigRunner Java class rather than through the command line. For these applications, the
PigRunner interface has been expanded to accommodate embedded Pig. PigRunner accepts
Python and JavaScript scripts as input. These scripts can potentially contain multiple Pig
pipelines; therefore, we need a way to return results for all of them.

To do this and to preserve backward compatibility PigStats and related objects were
expanded as shown below:

• PigStats is now an abstract class. (PigStats as it was before has become SimplePigStats.)

Control Structures

Page 8
Copyright © 2007 The Apache Software Foundation. All rights reserved.

• SimplePigStats is a new class that extends PigStats. SimplePigStats.getAllStats() will
return null.

• EmbeddedPigStats is a new class that extends PigStats. EmbeddedPigStats will return
null for methods not listed in the proposal below.

• isEmbedded() is a new abstract method that accommodates embedded Pig.
• getAllStats() and List< > getAllErrorMessages() methods were added to the PigStats

class. The map returned from getAllStats is keyed on the name of the pipeline provided in
the compile call. If the name was not compiled an internally generated id would be used.

• The PigProgressNotificationListener interface was modified to add script id to all its
methods.

For more details, see Java Objects.

1.4. Usage Examples

1.4.1. Passing a Pig Script

This example shows you how to pass an entire Pig script to the compile call.

#!/usr/bin/python

from org.apache.pig.scripting import Pig

P = Pig.compileFromFile("""myscript.pig""")

input = "original"
output = "output"

result = p.bind({'in':input, 'out':output}).runSingle()
if result.isSuccessful():

print "Pig job succeeded"
else:

raise "Pig job failed"

1.4.2. Convergence

There is a class of problems that involve iterating over a data pipeline an indeterminate
number of times until a certain value is reached. Examples arise in machine learning, graph
traversal, and a host of numerical analysis problems which involve finding interpolations,
extrapolations or regressions. The Python example below shows one way to achieve
convergence using Pig scripts.

#!/usr/bin/python

explicitly import Pig class

Control Structures

Page 9
Copyright © 2007 The Apache Software Foundation. All rights reserved.

from org.apache.pig.scripting import Pig

P = Pig.compile("""A = load '$input' as (user, age, gpa);
B = group A all;
C = foreach B generate AVG(A.gpa);
store C into '$output';

""")
initial output
input = "studenttab5"
output = "output-5"
final = "final-output"

for i in range(1, 4):
Q = P.bind({'input':input, 'output':output}) # attaches $input, $output

in Pig Latin to input, output Python variable
results = Q.runSingle()

if results.isSuccessful() == "FAILED":
raise "Pig job failed"

iter = results.result("C").iterator()
if iter.hasNext():

tuple = iter.next()
value = tuple.get(0)
if float(str(value)) < 3:

print "value: " + str(value)
input = "studenttab" + str(i+5)
output = "output-" + str(i+5)
print "output: " + output

else:
Pig.fs("mv " + output + " " + final)
break

1.4.3. Automated Pig Latin Generation

A number of user frameworks do automated generation of Pig Latin.

1.4.3.1. Conditional Compilation

A sub-use case of automated generation is conditional code generation. Different processing
might be required based on whether this is weekday or a weekend.

str = "A = load 'input';"
if today.isWeekday():

str = str + "B = filter A by weekday_filter(*);"
else:

str = str + "B = filter A by weekend_filter(*);"
str = str + "C = group B by user;"
results = Pig.compile(str).bind().runSingle()

1.4.3.2. Parallel Execution

Control Structures

Page 10
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Another sub-use case of automated generation is parallel execution of identical pipelines.
You may have a single pipeline that you would like to run multiple data sets through in
parallel. In the example below, the pipeline is run for the US, the UK, and Brazil.

P = Pig.compile("""A = load '$in';
B = filter A by user is not null;
...
store Z into '$out';

""")

Q = P.bind([{'in':'us_raw','out':'us_processed'},
{'in':'uk_raw','out':'uk_processed'},
{'in':'brazil_raw','out':'brazil_processed'}])

results = Q.run() # it blocks until all pipelines are completed

for i in [0, 1, 2]:
result = results[i]
... # check result for each pipeline

1.5. Java Objects

1.5.1. Pig Object

public class Pig {
/**
* Run a filesystem command. Any output from this command is written

to
* stdout or stderr as appropriate.
* @param cmd Filesystem command to run along with its arguments as one
* string.
* @throws IOException
*/
public static void fs(String cmd) throws IOException {...}

/**
* Register a jar for use in Pig. Once this is done this jar will be
* registered for ALL SUBSEQUENT Pig pipelines in this script.
* If you wish to register it for only a single Pig pipeline, use
* register within that definition.
* @param jarfile Path of jar to include.
* @throws IOException if the indicated jarfile cannot be found.
*/
public static void registerJar(String jarfile) throws IOException {...}

/**
* Register script UDFs for use in Pig. Once this is done all UDFs
* defined in the file will be available for ALL SUBSEQUENT
* Pig pipelines in this script. If you wish to register UDFS for

Control Structures

Page 11
Copyright © 2007 The Apache Software Foundation. All rights reserved.

* only a single Pig pipeline, use register within that definition.
* @param udffile Path of the script UDF file
* @param namespace namespace of the UDFs
* @throws IOException
*/
public static void registerUDF(String udffile, String namespace) throws

IOException {...}

/**
* Define an alias for a UDF or a streaming command. This definition
* will then be present for ALL SUBSEQUENT Pig pipelines defined in

this
* script. If you wish to define it for only a single Pig pipeline,

use
* define within that definition.
* @param alias name of the defined alias
* @param definition string this alias is defined as
*/
public static void define(String alias, String definition) throws

IOException {...}

/**
* Set a variable for use in Pig Latin. This set
* will then be present for ALL SUBSEQUENT Pig pipelines defined in

this
* script. If you wish to set it for only a single Pig pipeline, use
* set within that definition.
* @param var variable to set
* @param value to set it to
*/
public static void set(String var, String value) throws IOException

{...}

/**
* Define a Pig pipeline.
* @param pl Pig Latin definition of the pipeline.
* @return Pig object representing this pipeline.
* @throws IOException if the Pig Latin does not compile.
*/
public static Pig compile(String pl) throws IOException {...}

/**
* Define a named portion of a Pig pipeline. This allows it
* to be imported into another pipeline.
* @param name Name that will be used to define this pipeline.
* The namespace is global.
* @param pl Pig Latin definition of the pipeline.
* @return Pig object representing this pipeline.
* @throws IOException if the Pig Latin does not compile.
*/
public static Pig compile(String name, String pl) throws IOException

{...}

/**

Control Structures

Page 12
Copyright © 2007 The Apache Software Foundation. All rights reserved.

* Define a Pig pipeline based on Pig Latin in a separate file.
* @param filename File to read Pig Latin from. This must be a purely
* Pig Latin file. It cannot contain host language constructs in it.
* @return Pig object representing this pipeline.
* @throws IOException if the Pig Latin does not compile or the file
* cannot be found.
*/
public static Pig compileFromFile(String filename) throws IOException

{...}

/**
* Define a named Pig pipeline based on Pig Latin in a separate file.
* This allows it to be imported into another pipeline.
* @param name Name that will be used to define this pipeline.
* The namespace is global.
* @param filename File to read Pig Latin from. This must be a purely
* Pig Latin file. It cannot contain host language constructs in it.
* @return Pig object representing this pipeline.
* @throws IOException if the Pig Latin does not compile or the file
* cannot be found.
*/
public static Pig compileFromFile(String name, String filename) throws

IOException {...}

/**
* Bind this to a set of variables. Values must be provided
* for all Pig Latin parameters.
* @param vars map of variables to bind. Keys should be parameters

defined
* in the Pig Latin. Values should be strings that provide values for

those
* parameters. They can be either constants or variables from the host
* language. Host language variables must contain strings.
* @return a {@link BoundScript} object
* @throws IOException if there is not a key for each
* Pig Latin parameter or if they contain unsupported types.
*/
public BoundScript bind(Map<String, String> vars) throws IOException

{...}

/**
* Bind this to multiple sets of variables. This will
* cause the Pig Latin script to be executed in parallel over these

sets of
* variables.
* @param vars list of maps of variables to bind. Keys should be

parameters defined
* in the Pig Latin. Values should be strings that provide values for

those
* variables. They can be either constants or variables from the host
* language. Host language variables must be strings.
* @return a {@link BoundScript} object
* @throws IOException if there is not a key for each
* Pig Latin parameter or if they contain unsupported types.

Control Structures

Page 13
Copyright © 2007 The Apache Software Foundation. All rights reserved.

*/
public BoundScript bind(List<Map<String, String>> vars) throws

IOException {...}

/**
* Bind a Pig object to variables in the host language (optional
* operation). This does an implicit mapping of variables in the host
* language to parameters in Pig Latin. For example, if the user
* provides a Pig Latin statement
* p = Pig.compile("A = load '$input';");
* and then calls this function it will look for a variable called
* input in the host language. Scoping rules of the host
* language will be followed in selecting which variable to bind. The
* variable bound must contain a string value. This method is optional
* because not all host languages may support searching for in scope
* variables.
* @throws IOException if host language variables are not found to

resolve all
* Pig Latin parameters or if they contain unsupported types.
*/
public BoundScript bind() throws IOException {...}

}

1.5.2. BoundScript Object

public class BoundScript {

/**
* Run a pipeline on Hadoop.
* If there are no stores in this pipeline then nothing will be run.
* @return {@link PigStats}, null if there is no bound query to run.
* @throws IOException
*/
public PigStats runSingle() throws IOException {...}

/**
* Run a pipeline on Hadoop.
* If there are no stores in this pipeline then nothing will be run.
* @param prop Map of properties that Pig should set when running the

script.
* This is intended for use with scripting languages that do not

support
* the Properties object.
* @return {@link PigStats}, null if there is no bound query to run.
* @throws IOException
*/
public PigStats runSingle(Properties prop) throws IOException {...}

/**
* Run a pipeline on Hadoop.
* If there are no stores in this pipeline then nothing will be run.
* @param propfile File with properties that Pig should set when

Control Structures

Page 14
Copyright © 2007 The Apache Software Foundation. All rights reserved.

running the script.
* @return {@link PigStats}, null if there is no bound query to run.
* @throws IOException
*/
public PigStats runSingle(String propfile) throws IOException {...}

/**
* Run multiple instances of bound pipeline on Hadoop in parallel.
* If there are no stores in this pipeline then nothing will be run.
* Bind is called first with the list of maps of variables to bind.
* @return a list of {@link PigStats}, one for each map of variables

passed
* to bind.
* @throws IOException
*/
public List<PigStats> run() throws IOException {...}

/**
* Run multiple instances of bound pipeline on Hadoop in parallel.
* @param prop Map of properties that Pig should set when running the

script.
* This is intended for use with scripting languages that do not

support
* the Properties object.
* @return a list of {@link PigStats}, one for each map of variables

passed
* to bind.
* @throws IOException
*/
public List<PigStats> run(Properties prop) throws IOException {...}

/**
* Run multiple instances of bound pipeline on Hadoop in parallel.
* @param propfile File with properties that Pig should set when

running the script.
* @return a list of PigResults, one for each map of variables passed
* to bind.
* @throws IOException
*/
public List<PigStats> run(String propfile) throws IOException {...}

/**
* Run illustrate for this pipeline. Results will be printed to

stdout.
* @throws IOException if illustrate fails.
*/
public void illustrate() throws IOException {...}

/**
* Explain this pipeline. Results will be printed to stdout.
* @throws IOException if explain fails.
*/
public void explain() throws IOException {...}

Control Structures

Page 15
Copyright © 2007 The Apache Software Foundation. All rights reserved.

/**
* Describe the schema of an alias in this pipeline.
* Results will be printed to stdout.
* @param alias to be described
* @throws IOException if describe fails.
*/
public void describe(String alias) throws IOException {...}

}

1.5.3. PigStats Object

public abstract class PigStats {
public abstract boolean isEmbedded();

/**
* An embedded script contains one or more pipelines.
* For a named pipeline in the script, the key in the returning map is

the name of the pipeline.
* Otherwise, the key in the returning map is the script id of the

pipeline.
*/
public abstract Map<String, List<PigStats>> getAllStats();

public abstract List<String> getAllErrorMessages();
}

1.5.4. PigProgressNotificationListener Object

public interface PigProgressNotificationListener extends
java.util.EventListener {

/**
* Invoked just before launching MR jobs spawned by the script.
* @param scriptId id of the script
* @param numJobsToLaunch the total number of MR jobs spawned by the

script
*/
public void launchStartedNotification(String scriptId, int

numJobsToLaunch);

/**
* Invoked just before submitting a batch of MR jobs.
* @param scriptId id of the script
* @param numJobsSubmitted the number of MR jobs in the batch
*/
public void jobsSubmittedNotification(String scriptId, int

numJobsSubmitted);

/**
* Invoked after a MR job is started.
* @param scriptId id of the script

Control Structures

Page 16
Copyright © 2007 The Apache Software Foundation. All rights reserved.

* @param assignedJobId the MR job id
*/
public void jobStartedNotification(String scriptId, String

assignedJobId);

/**
* Invoked just after a MR job is completed successfully.
* @param scriptId id of the script
* @param jobStats the {@link JobStats} object associated with the MR

job
*/
public void jobFinishedNotification(String scriptId, JobStats

jobStats);

/**
* Invoked when a MR job fails.
* @param scriptId id of the script
* @param jobStats the {@link JobStats} object associated with the MR

job
*/
public void jobFailedNotification(String scriptId, JobStats jobStats);

/**
* Invoked just after an output is successfully written.
* @param scriptId id of the script
* @param outputStats the {@link OutputStats} object associated with

the output
*/
public void outputCompletedNotification(String scriptId, OutputStats

outputStats);

/**
* Invoked to update the execution progress.
* @param scriptId id of the script
* @param progress the percentage of the execution progress
*/
public void progressUpdatedNotification(String scriptId, int progress);

/**
* Invoked just after all MR jobs spawned by the script are completed.
* @param scriptId id of the script
* @param numJobsSucceeded the total number of MR jobs succeeded
*/
public void launchCompletedNotification(String scriptId, int

numJobsSucceeded);
}

2. Embedded Pig - Java

To enable control flow, you can embed Pig Latin statements and Pig commands in the Java
programming language.

Note that host languages and the languages of UDFs (included as part of the embedded Pig)

Control Structures

Page 17
Copyright © 2007 The Apache Software Foundation. All rights reserved.

are completely orthogonal. For example, a Pig Latin statement that registers a Java UDF may
be embedded in Python, JavaScript, Groovy, or Java. The exception to this rule is
"combined" scripts – here the languages must match (see the Advanced Topics for Python,
Advanced Topics for JavaScript and Advanced Topics for Groovy).

2.1. PigServer Interface

Currently, PigServer is the main interface for embedding Pig in Java. PigServer can now be
instantiated from multiple threads. (In the past, PigServer contained references to static data
that prevented multiple instances of the object to be created from different threads within
your application.) Please note that PigServer is NOT thread safe; the same object can't be
shared across multiple threads.

2.2. Usage Examples

Local Mode

From your current working directory, compile the program. (Note that idlocal.class is written
to your current working directory. Include “.” in the class path when you run the program.)

$ javac -cp pig.jar idlocal.java

From your current working directory, run the program. To view the results, check the output
file, id.out.

Unix: $ java -cp pig.jar:. idlocal
Windows: $ java –cp .;pig.jar idlocal

idlocal.java - The sample code is based on Pig Latin statements that extract all user IDs from
the /etc/passwd file. Copy the /etc/passwd file to your local working directory.

import java.io.IOException;
import org.apache.pig.PigServer;
public class idlocal{

public static void main(String[] args) {
try {

PigServer pigServer = new PigServer("local");
runIdQuery(pigServer, "passwd");

}
catch(Exception e) {
}

}
public static void runIdQuery(PigServer pigServer, String inputFile)

throws IOException {
pigServer.registerQuery("A = load '" + inputFile + "' using

PigStorage(':');");

Control Structures

Page 18
Copyright © 2007 The Apache Software Foundation. All rights reserved.

udf.html#jython-advanced
udf.html#js-advanced
udf.html#groovy-advanced
http://pig.apache.org/docs/r0.13.0/api/org/apache/pig/PigServer.html

pigServer.registerQuery("B = foreach A generate $0 as id;");
pigServer.store("B", "id.out");

}
}

Mapreduce Mode

Point $HADOOPDIR to the directory that contains the hadoop-site.xml file. Example:

$ export HADOOPDIR=/yourHADOOPsite/conf

From your current working directory, compile the program. (Note that idmapreduce.class is
written to your current working directory. Include “.” in the class path when you run the
program.)

$ javac -cp pig.jar idmapreduce.java

From your current working directory, run the program. To view the results, check the idout
directory on your Hadoop system.

Unix: $ java -cp pig.jar:.:$HADOOPDIR idmapreduce
Cygwin: $ java –cp '.;pig.jar;$HADOOPDIR' idmapreduce

idmapreduce.java - The sample code is based on Pig Latin statements that extract all user IDs
from the /etc/passwd file. Copy the /etc/passwd file to your home directory on the HDFS.

import java.io.IOException;
import org.apache.pig.PigServer;
public class idmapreduce{

public static void main(String[] args) {
try {

PigServer pigServer = new PigServer("mapreduce");
runIdQuery(pigServer, "passwd");

}
catch(Exception e) {
}

}
public static void runIdQuery(PigServer pigServer, String inputFile)

throws IOException {
pigServer.registerQuery("A = load '" + inputFile + "' using

PigStorage(':');")
pigServer.registerQuery("B = foreach A generate $0 as id;");
pigServer.store("B", "idout");

}
}

3. Pig Macros

Pig Latin supports the definition, expansion, and import of macros.

Control Structures

Page 19
Copyright © 2007 The Apache Software Foundation. All rights reserved.

3.1. DEFINE (macros)

Defines a Pig macro.

3.1.1. Syntax

Define Macro

DEFINE macro_name (param [, param ...]) RETURNS {void | alias [, alias ...]} { pig_latin_fragment };

Expand Macro

alias [, alias ...] = macro_name (param [, param ...]) ;

3.1.2. Terms

macro_name The name of the macro. Macro names are global.

param (optional) A comma-separated list of one or more
parameters, including IN aliases (Pig relations),
enclosed in parentheses, that are referenced in the Pig
Latin fragment.

Unlike user defined functions (UDFs), which only
allow quoted strings as its parameters, Pig macros
support four types of parameters:

• alias (IDENTIFIER)
• integer
• float
• string literal (quoted string)

Note that type is NOT part of parameter definition. It
is your responsibility to document the types of the
parameters in a macro.

void If the macro has no return alias, then void must be
specified.

alias (optional) A comma-separated list of one or more
return aliases (Pig relations) that are referenced in the
Pig Latin fragment. The alias must exist in the macro
in the form $<alias>.

If the macro has no return alias, then void must be

Control Structures

Page 20
Copyright © 2007 The Apache Software Foundation. All rights reserved.

specified.

pig_latin_fragment One or more Pig Latin statements, enclosed in curly
brackets.

3.1.3. Usage

Macro Definition

A macro definition can appear anywhere in a Pig script as long as it appears prior to the first
use. A macro definition can include references to other macros as long as the referenced
macros are defined prior to the macro definition. Recursive references are not allowed.

Note the following restrictions:

• Macros are not allowed inside a FOREACH nested block.
• Macros cannot contain Grunt shell commands.
• Macros cannot include a user-defined schema that has a name collision with an alias in

the macro.

In this example the macro is named my_macro. Note that only aliases A and C are visible
from the outside; alias B is not visible from the outside.

DEFINE my_macro(A, sortkey) RETURNS C {
B = FILTER $A BY my_filter(*);
$C = ORDER B BY $sortkey;

}

Macro Expansion

A macro can be expanded inline using the macro expansion syntax. Note the following:

• Any alias in the macro which isn't visible from the outside will be prefixed with a macro
name and suffixed with an instance id to avoid namespace collision.

• Macro expansion is not a complete replacement for function calls. Recursive expansions
are not supported.

In this example my_macro (defined above) is expanded. Because alias B is not visible from
the outside it is renamed macro_my_macro_B_0.

/* These statements ... */

X = LOAD 'users' AS (user, address, phone);
Y = my_macro(X, user);

Control Structures

Page 21
Copyright © 2007 The Apache Software Foundation. All rights reserved.

basic.html#nested-block
cmds.html#shell-cmds

STORE Y into 'bar';

/* Are expanded into these statements ... */

X = LOAD 'users' AS (user, address, phone);
macro_my_macro_B_0 = FILTER X BY my_filter(*);
Y = ORDER macro_my_macro_B_0 BY user;
STORE Y INTO 'output';

Macro Import

A macro can be imported from another Pig script (see IMPORT (macros)). Splitting your
macros from your main Pig script is useful for making reusable code.

3.1.4. Examples

In this example no parameters are passed to the macro.

DEFINE my_macro() returns B {
D = LOAD 'data' AS (a0:int, a1:int, a2:int);
$B = FILTER D BY ($1 == 8) OR (NOT ($0+$2 > $1));

};

X = my_macro();
STORE X INTO 'output';

In this example parameters are passed and returned.

DEFINE group_and_count (A, group_key, reducers) RETURNS B {
D = GROUP $A BY $group_key PARALLEL $reducers;
$B = FOREACH D GENERATE group, COUNT($A);

};

X = LOAD 'users' AS (user, age, zip);
Y = group_and_count (X, user, 20);
Z = group_and_count (X, age, 30);
STORE Y into 'byuser';
STORE Z into 'byage';

In this example the macro does not have a return alias; thus, void must be specified.

DEFINE my_macro(A, sortkey) RETURNS void {
B = FILTER $A BY my_filter(*);
C = ORDER B BY $sortkey;
STORE C INTO 'my_output';

};

/* To expand this macro, use the following */

my_macro(alpha, 'user');

In this example a name collision will occur. Here letter B is used as alias name and as name

Control Structures

Page 22
Copyright © 2007 The Apache Software Foundation. All rights reserved.

in user-defined schema. Pig will throw an exception when name collision is detected.

DEFINE my_macro(A, sortkey) RETURNS E {
B = FILTER $A BY my_filter(*);
C = ORDER B BY $sortkey;
D = LOAD 'in' as (B:bag{});

$E = FOREACH D GENERATE COUNT(B);
};

This example demonstrates the importance of knowing parameter types before using them in
a macro script. Notice that when pass parameter $outfile to my_macro1 inside my_macro2, it
must be quoted.

-- A: an alias
-- outfile: output file path (quoted string)
DEFINE my_macro1(A, outfile) RETURNS void {

STORE $A INTO '$outfile';
};

-- A: an alias
-- sortkey: column name (quoted string)
-- outfile: output file path (quoted string)
DEFINE my_macro2(A, sortkey, outfile) RETURNS void {

B = FILTER $A BY my_filter(*);
C = ORDER B BY $sortkey;
my_macro1(C, '$outfile');

};

alpha = Load 'input' as (user, age, gpa);
my_macro2(alpha, 'age', 'order_by_age.txt');

In this example a macro (group_with_parallel) refers to another macro (foreach_count).

DEFINE foreach_count(A, C) RETURNS B {
$B = FOREACH $A GENERATE group, COUNT($C);

};

DEFINE group_with_parallel (A, group_key, reducers) RETURNS B {
C = GROUP $A BY $group_key PARALLEL $reducers;
$B = foreach_count(C, $A);

};

/* These statements ... */

X = LOAD 'users' AS (user, age, zip);
Y = group_with_parallel (X, user, 23);
STORE Y INTO 'byuser';

/* Are expanded into these statements ... */

X = LOAD 'users' AS (user, age, zip);
macro_group_with_parallel_C_0 = GROUP X by (user) PARALLEL 23;

Control Structures

Page 23
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Y = FOREACH macro_group_with_parallel_C_0 GENERATE group, COUNT(X);
STORE Y INTO 'byuser';

3.2. IMPORT (macros)

Import macros defined in a separate file.

3.2.1. Syntax

IMPORT 'file-with-macro';

3.2.2. Terms

file-with-macro The name of a file (enclosed in single quotes) that
contains one or more macro definitions; for example,
'my_macro.pig' or 'mypath/my_macro.pig'.

Macro names are global and all macros share the
same name space. While the file can contain more
than one macro definition, having two macros with
the same name in your execution context will result
in an error.

Files are imported based on either (1) the given file
path or (2) the import path specified via the Pig
property pig.import.search.path. If a file path is
given, whether absolute or relative to the current
directory (starting with . or ..), the import path will be
ignored.

3.2.3. Usage

Use the IMPORT command to import a macro defined in a separate file into your Pig script.

IMPORT adds the macro definitions to the Pig Latin namespace; these macros can then be
invoked as if they were defined in the same file.

Macros can only contain Pig Latin statements; Grunt shell commands are not supported.
REGISTER statements and parameter definitions with %default or %declare are both valid
however. Your macro file also IMPORT other macro files, so long as these imports are not
recursive.

See also: DEFINE (macros)

Control Structures

Page 24
Copyright © 2007 The Apache Software Foundation. All rights reserved.

3.2.4. Example

In this example, because a path is not given, Pig will use the import path specified in
pig.import.search.path.

/* myscript.pig */
...
...
IMPORT 'my_macro.pig';
...
...

4. Parameter Substitution

4.1. Description

Substitute values for parameters at run time.

4.1.1. Syntax: Specifying Parameters Using the Pig Command Line

pig {-param param_name = param_value | -param_file file_name} [-debug | -dryrun] script

4.1.2. Syntax: Specifying Parameters Using Preprocessor Statements in a Pig Script

{%declare | %default} param_name param_value

4.1.3. Terms

pig Keyword

Note: exec, run, and explain also support parameter
substitution.

-param Flag. Use this option when the parameter is included
in the command line.

Multiple parameters can be specified. If the same
parameter is specified multiple times, the last value
will be used and a warning will be generated.

Command line parameters and parameter files can be
combined with command line parameters taking
precedence.

Control Structures

Page 25
Copyright © 2007 The Apache Software Foundation. All rights reserved.

param_name The name of the parameter.

The parameter name has the structure of a standard
language identifier: it must start with a letter or
underscore followed by any number of letters, digits,
and underscores.

Parameter names are case insensitive.

If you pass a parameter to a script that the script does
not use, this parameter is silently ignored. If the script
has a parameter and no value is supplied or
substituted, an error will result.

param_value The value of the parameter.

A parameter value can take two forms:

• A sequence of characters enclosed in single or
double quotes. In this case the unquoted version
of the value is used during substitution. Quotes
within the value can be escaped with the
backslash character (\). Single word values that
don't use special characters such as % or = don't
have to be quoted.

• A command enclosed in back ticks.

The value of a parameter, in either form, can be
expressed in terms of other parameters as long as the
values of the dependent parameters are already
defined.

There are no hard limits on the size except that
parameters need to fit into memory.

-param_file Flag. Use this option when the parameter is included
in a file.

Multiple files can be specified. If the same parameter
is present multiple times in the file, the last value will
be used and a warning will be generated. If a
parameter present in multiple files, the value from the
last file will be used and a warning will be generated.

Command line parameters and parameter files can be
combined with command line parameters taking
precedence.

Control Structures

Page 26
Copyright © 2007 The Apache Software Foundation. All rights reserved.

file_name The name of a file containing one or more
parameters.

A parameter file will contain one line per parameter.
Empty lines are allowed. Perl-style (#) comment lines
are also allowed. Comments must take a full line and
must be the first character on the line. Each
parameter line will be of the form: param_name =
param_value. White spaces around = are allowed but
are optional.

-debug Flag. With this option, the script is run and a fully
substituted Pig script is produced in the current
working directory named
original_script_name.substituted

-dryrun Flag. With this option, the script is not run and a fully
substituted Pig script is produced in the current
working directory named
original_script_name.substituted

script A pig script. The pig script must be the last element
in the Pig command line.

• If parameters are specified in the Pig command
line or in a parameter file, the script should
include a $param_name for each para_name
included in the command line or parameter file.

• If parameters are specified using the
preprocessor statements, the script should
include either %declare or %default.

• In the script, parameter names can be escaped
with the backslash character (\) in which case
substitution does not take place.

%declare Preprocessor statement included in a Pig script.

Use to describe one parameter in terms of other
parameters.

The declare statement is processed prior to running
the Pig script.

The scope of a parameter value defined using declare
is all the lines following the declare statement until
the next declare statement that defines the same

Control Structures

Page 27
Copyright © 2007 The Apache Software Foundation. All rights reserved.

parameter is encountered. When used with run/exec
command, see Scope section.

%default Preprocessor statement included in a Pig script.

Use to provide a default value for a parameter. The
default value has the lowest priority and is used if a
parameter value has not been defined by other means.

The default statement is processed prior to running
the Pig script.

The scope is the same as for %declare.

4.2. Usage

Parameter substitution enables you to write Pig scripts that include parameters and to supply
values for these parameters at run time. For instance, suppose you have a job that needs to
run every day using the current day's data. You can create a Pig script that includes a
parameter for the date. Then, when you run this script you can specify or supply a value for
the date parameter using one of the supported methods.

4.2.1. Specifying Parameters

You can specify parameter names and parameter values as follows:

• As part of a command line.

• In parameter file, as part of a command line.

• With the declare statement, as part of Pig script.

• With default statement, as part of a Pig script.

Parameter substitution may be used inside of macros. When there are conflicts between
names of parameters defined at the top level and names of arguments or return values for a
given macro, then ones inside the macro are used. See DEFINE (macros).

4.2.2. Precedence

Precedence for parameters is as follows, from highest to lowest:

1. Parameters defined using the declare statement

2. Parameters defined in the command line using -param

Control Structures

Page 28
Copyright © 2007 The Apache Software Foundation. All rights reserved.

3. Parameters defined in parameter files specified by -param_file

4. Parameters defined using the default statement

4.2.3. Processing Order and Precedence

Parameters are processed as follows:

• Command line parameters are scanned in the order they are specified on the command
line.

• Parameter files are scanned in the order they are specified on the command line. Within
each file, the parameters are processed in the order they are listed.

• Declare and default preprocessors statements are processed in the order they appear in the
Pig script.

4.2.4. Scope

Scope of the parameters is global except when used with run/exec command. Caller would
not see the parameters declared within the callee's scripts. See example for more details.

4.3. Examples

4.3.1. Specifying Parameters in the Command Line

Suppose we have a data file called 'mydata' and a pig script called 'myscript.pig'.

mydata

1 2 3
4 2 1
8 3 4

myscript.pig

A = LOAD '$data' USING PigStorage() AS (f1:int, f2:int, f3:int);
DUMP A;

In this example the parameter (data) and the parameter value (mydata) are specified in the
command line. If the parameter name in the command line (data) and the parameter name in
the script ($data) do not match, the script will not run. If the value for the parameter (mydata)
is not found, an error is generated.

$ pig -param data=mydata myscript.pig

(1,2,3)

Control Structures

Page 29
Copyright © 2007 The Apache Software Foundation. All rights reserved.

(4,2,1)
(8,3,4)

4.3.2. Specifying parameters Using a Parameter File

Suppose we have a parameter file called 'myparams.'

my parameters
data1 = mydata1
cmd = `generate_name`

In this example the parameters and values are passed to the script using the parameter file.

$ pig -param_file myparams script2.pig

4.3.3. Specifying Parameters Using the Declare Statement

In this example the command is executed and its stdout is used as the parameter value.

%declare CMD `generate_date`;
A = LOAD '/data/mydata/$CMD';
B = FILTER A BY $0>'5';

etc ...

4.3.4. Specifying Parameters Using the Default Statement

In this example the parameter (DATE) and value ('20090101') are specified in the Pig script
using the default statement. If a value for DATE is not specified elsewhere, the default value
20090101 is used.

%default DATE '20090101';
A = load '/data/mydata/$DATE';

etc ...

4.3.5. Specifying Parameter Values as a sequence of Characters

In this example the characters (in this case, Joe's URL) can be enclosed in single or double
quotes, and quotes within the sequence of characters can be escaped.

%declare DES 'Joe\'s URL';
A = LOAD 'data' AS (name, description, url);
B = FILTER A BY description == '$DES';

etc ...

In this example single word values that don't use special characters (in this case, mydata)
don't have to be enclosed in quotes.

Control Structures

Page 30
Copyright © 2007 The Apache Software Foundation. All rights reserved.

$ pig -param data=mydata myscript.pig

4.3.6. Specifying Parameter Values as a Command

In this example the command is enclosed in back ticks. First, the parameters mycmd and date
are substituted when the declare statement is encountered. Then the resulting command is
executed and its stdout is placed in the path before the load statement is run.

%declare CMD `$mycmd $date`;
A = LOAD '/data/mydata/$CMD';
B = FILTER A BY $0>'5';

etc ...

4.3.7. Scoping with run/exec commands

In this example, parameters passed to run/exec command or declared within the called scripts
are not visible to the caller.

/* main.pig */
run -param var1=10 script1.pig
exec script2.pig

A = ...
B = FOREACH A generate $var1, $var2, ... --ERROR. unknown parameters var1,
var2

/* script1.pig */
...

/* script2.pig */
%declare var2 20
...

Control Structures

Page 31
Copyright © 2007 The Apache Software Foundation. All rights reserved.

	1 Embedded Pig - Python, JavaScript and Groovy
	1.1 Invocation Basics
	1.2 Invocation Details
	1.2.1 Compile
	1.2.2 Bind
	1.2.3 Run
	1.2.4 Passing Parameters to a Script
	1.2.4.1 1. -param
	1.2.4.2 2. Command line arguments

	1.3 PigRunner API
	1.4 Usage Examples
	1.4.1 Passing a Pig Script
	1.4.2 Convergence
	1.4.3 Automated Pig Latin Generation
	1.4.3.1 Conditional Compilation
	1.4.3.2 Parallel Execution

	1.5 Java Objects
	1.5.1 Pig Object
	1.5.2 BoundScript Object
	1.5.3 PigStats Object
	1.5.4 PigProgressNotificationListener Object

	2 Embedded Pig - Java
	2.1 PigServer Interface
	2.2 Usage Examples

	3 Pig Macros
	3.1 DEFINE (macros)
	3.1.1 Syntax
	3.1.2 Terms
	3.1.3 Usage
	3.1.4 Examples

	3.2 IMPORT (macros)
	3.2.1 Syntax
	3.2.2 Terms
	3.2.3 Usage
	3.2.4 Example

	4 Parameter Substitution
	4.1 Description
	4.1.1 Syntax: Specifying Parameters Using the Pig Command Line
	4.1.2 Syntax: Specifying Parameters Using Preprocessor Statements in a Pig Script
	4.1.3 Terms

	4.2 Usage
	4.2.1 Specifying Parameters
	4.2.2 Precedence
	4.2.3 Processing Order and Precedence
	4.2.4 Scope

	4.3 Examples
	4.3.1 Specifying Parameters in the Command Line
	4.3.2 Specifying parameters Using a Parameter File
	4.3.3 Specifying Parameters Using the Declare Statement
	4.3.4 Specifying Parameters Using the Default Statement
	4.3.5 Specifying Parameter Values as a sequence of Characters
	4.3.6 Specifying Parameter Values as a Command
	4.3.7 Scoping with run/exec commands

