
Copyright © 2008 The Apache Software Foundation. All rights reserved.

ZooKeeper Administrator's Guide

A Guide to Deployment and Administration

by

Table of contents

1 Deployment.. 2

 1.1 System Requirements..2

 1.2 Clustered (Multi-Server) Setup...2

 1.3 Single Server and Developer Setup..4

2 Administration.. 4

 2.1 Designing a ZooKeeper Deployment... 5

 2.2 Provisioning.. 6

 2.3 Things to Consider: ZooKeeper Strengths and Limitations..6

 2.4 Administering..6

 2.5 Maintenance.. 6

 2.6 Supervision..7

 2.7 Monitoring...7

 2.8 Logging... 7

 2.9 Troubleshooting.. 7

 2.10 Configuration Parameters..8

 2.11 ZooKeeper Commands: The Four Letter Words.. 15

 2.12 Data File Management..17

 2.13 Things to Avoid.. 20

 2.14 Best Practices.. 21

ZooKeeper Administrator's Guide

Page 2Copyright © 2008 The Apache Software Foundation. All rights reserved.

1 Deployment

This section contains information about deploying Zookeeper and covers these topics:

• System Requirements
• Clustered (Multi-Server) Setup
• Single Server and Developer Setup

The first two sections assume you are interested in installing ZooKeeper in a production
environment such as a datacenter. The final section covers situations in which you are setting
up ZooKeeper on a limited basis - for evaluation, testing, or development - but not in a
production environment.

1.1 System Requirements

1.1.1 Supported Platforms

• GNU/Linux is supported as a development and production platform for both server and
client.

• Sun Solaris is supported as a development and production platform for both server and
client.

• FreeBSD is supported as a development and production platform for clients only. Java
NIO selector support in the FreeBSD JVM is broken.

• Win32 is supported as a development platform only for both server and client.
• MacOSX is supported as a development platform only for both server and client.

1.1.2 Required Software

ZooKeeper runs in Java, release 1.6 or greater (JDK 6 or greater). It runs as an ensemble
of ZooKeeper servers. Three ZooKeeper servers is the minimum recommended size for
an ensemble, and we also recommend that they run on separate machines. At Yahoo!,
ZooKeeper is usually deployed on dedicated RHEL boxes, with dual-core processors, 2GB of
RAM, and 80GB IDE hard drives.

1.2 Clustered (Multi-Server) Setup

For reliable ZooKeeper service, you should deploy ZooKeeper in a cluster known as an
ensemble. As long as a majority of the ensemble are up, the service will be available.
Because Zookeeper requires a majority, it is best to use an odd number of machines. For
example, with four machines ZooKeeper can only handle the failure of a single machine; if
two machines fail, the remaining two machines do not constitute a majority. However, with
five machines ZooKeeper can handle the failure of two machines.

ZooKeeper Administrator's Guide

Page 3Copyright © 2008 The Apache Software Foundation. All rights reserved.

Here are the steps to setting a server that will be part of an ensemble. These steps should be
performed on every host in the ensemble:
1. Install the Java JDK. You can use the native packaging system for your system, or

download the JDK from:

http://java.sun.com/javase/downloads/index.jsp
2. Set the Java heap size. This is very important to avoid swapping, which will seriously

degrade ZooKeeper performance. To determine the correct value, use load tests,
and make sure you are well below the usage limit that would cause you to swap. Be
conservative - use a maximum heap size of 3GB for a 4GB machine.

3. Install the ZooKeeper Server Package. It can be downloaded from:

http://zookeeper.apache.org/releases.html
4. Create a configuration file. This file can be called anything. Use the following settings as

a starting point:

tickTime=2000
dataDir=/var/lib/zookeeper/
clientPort=2181
initLimit=5
syncLimit=2
server.1=zoo1:2888:3888
server.2=zoo2:2888:3888
server.3=zoo3:2888:3888

You can find the meanings of these and other configuration settings in the section
Configuration Parameters. A word though about a few here:

Every machine that is part of the ZooKeeper ensemble should know about every other
machine in the ensemble. You accomplish this with the series of lines of the form
server.id=host:port:port. The parameters host and port are straightforward. You
attribute the server id to each machine by creating a file named myid, one for each
server, which resides in that server's data directory, as specified by the configuration file
parameter dataDir.

5. The myid file consists of a single line containing only the text of that machine's id. So
myid of server 1 would contain the text "1" and nothing else. The id must be unique
within the ensemble and should have a value between 1 and 255.

6. If your configuration file is set up, you can start a ZooKeeper server:

$ java -cp zookeeper.jar:lib/slf4j-api-1.6.1.jar:lib/
slf4j-log4j12-1.6.1.jar:lib/log4j-1.2.15.jar:conf \
org.apache.zookeeper.server.quorum.QuorumPeerMain zoo.cfg

http://java.sun.com/javase/downloads/index.jsp
http://zookeeper.apache.org/releases.html

ZooKeeper Administrator's Guide

Page 4Copyright © 2008 The Apache Software Foundation. All rights reserved.

QuorumPeerMain starts a ZooKeeper server, JMX management beans are also registered
which allows management through a JMX management console. The ZooKeeper JMX
document contains details on managing ZooKeeper with JMX.

See the script bin/zkServer.sh, which is included in the release, for an example of starting
server instances.

7. Test your deployment by connecting to the hosts:

In Java, you can run the following command to execute simple operations:

$ bin/zkCli.sh -server 127.0.0.1:2181

1.3 Single Server and Developer Setup

If you want to setup ZooKeeper for development purposes, you will probably want to setup a
single server instance of ZooKeeper, and then install either the Java or C client-side libraries
and bindings on your development machine.

The steps to setting up a single server instance are the similar to the above, except the
configuration file is simpler. You can find the complete instructions in the Installing and
Running ZooKeeper in Single Server Mode section of the ZooKeeper Getting Started Guide.

For information on installing the client side libraries, refer to the Bindings section of the
ZooKeeper Programmer's Guide.

2 Administration

This section contains information about running and maintaining ZooKeeper and covers
these topics:

• Designing a ZooKeeper Deployment
• Provisioning
• Things to Consider: ZooKeeper Strengths and Limitations
• Administering
• Maintenance
• Supervision
• Monitoring
• Logging
• Troubleshooting
• Configuration Parameters
• ZooKeeper Commands: The Four Letter Words
• Data File Management
• Things to Avoid
• Best Practices

http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/
zookeeperJMX.html
zookeeperJMX.html
zookeeperStarted.html#sc_InstallingSingleMode
zookeeperStarted.html#sc_InstallingSingleMode
zookeeperStarted.html
zookeeperProgrammers.html#Bindings
zookeeperProgrammers.html

ZooKeeper Administrator's Guide

Page 5Copyright © 2008 The Apache Software Foundation. All rights reserved.

2.1 Designing a ZooKeeper Deployment

The reliablity of ZooKeeper rests on two basic assumptions.
1. Only a minority of servers in a deployment will fail. Failure in this context means a

machine crash, or some error in the network that partitions a server off from the majority.
2. Deployed machines operate correctly. To operate correctly means to execute code

correctly, to have clocks that work properly, and to have storage and network
components that perform consistently.

The sections below contain considerations for ZooKeeper administrators to maximize
the probability for these assumptions to hold true. Some of these are cross-machines
considerations, and others are things you should consider for each and every machine in your
deployment.

2.1.1 Cross Machine Requirements

For the ZooKeeper service to be active, there must be a majority of non-failing machines that
can communicate with each other. To create a deployment that can tolerate the failure of F
machines, you should count on deploying 2xF+1 machines. Thus, a deployment that consists
of three machines can handle one failure, and a deployment of five machines can handle two
failures. Note that a deployment of six machines can only handle two failures since three
machines is not a majority. For this reason, ZooKeeper deployments are usually made up of
an odd number of machines.

To achieve the highest probability of tolerating a failure you should try to make machine
failures independent. For example, if most of the machines share the same switch, failure of
that switch could cause a correlated failure and bring down the service. The same holds true
of shared power circuits, cooling systems, etc.

2.1.2 Single Machine Requirements

If ZooKeeper has to contend with other applications for access to resourses like storage
media, CPU, network, or memory, its performance will suffer markedly. ZooKeeper has
strong durability guarantees, which means it uses storage media to log changes before the
operation responsible for the change is allowed to complete. You should be aware of this
dependency then, and take great care if you want to ensure that ZooKeeper operations aren’t
held up by your media. Here are some things you can do to minimize that sort of degradation:

• ZooKeeper's transaction log must be on a dedicated device. (A dedicated partition is not
enough.) ZooKeeper writes the log sequentially, without seeking Sharing your log device
with other processes can cause seeks and contention, which in turn can cause multi-
second delays.

ZooKeeper Administrator's Guide

Page 6Copyright © 2008 The Apache Software Foundation. All rights reserved.

• Do not put ZooKeeper in a situation that can cause a swap. In order for ZooKeeper to
function with any sort of timeliness, it simply cannot be allowed to swap. Therefore,
make certain that the maximum heap size given to ZooKeeper is not bigger than the
amount of real memory available to ZooKeeper. For more on this, see Things to Avoid
below.

2.2 Provisioning

2.3 Things to Consider: ZooKeeper Strengths and Limitations

2.4 Administering

2.5 Maintenance

Little long term maintenance is required for a ZooKeeper cluster however you must be aware
of the following:

2.5.1 Ongoing Data Directory Cleanup

The ZooKeeper Data Directory contains files which are a persistent copy of the znodes
stored by a particular serving ensemble. These are the snapshot and transactional log
files. As changes are made to the znodes these changes are appended to a transaction log,
occasionally, when a log grows large, a snapshot of the current state of all znodes will be
written to the filesystem. This snapshot supercedes all previous logs.

A ZooKeeper server will not remove old snapshots and log files when using the default
configuration (see autopurge below), this is the responsibility of the operator. Every serving
environment is different and therefore the requirements of managing these files may differ
from install to install (backup for example).

The PurgeTxnLog utility implements a simple retention policy that administrators can use.
The API docs contains details on calling conventions (arguments, etc...).

In the following example the last count snapshots and their corresponding logs are retained
and the others are deleted. The value of <count> should typically be greater than 3 (although
not required, this provides 3 backups in the unlikely event a recent log has become
corrupted). This can be run as a cron job on the ZooKeeper server machines to clean up the
logs daily.

 java -cp zookeeper.jar:lib/slf4j-api-1.6.1.jar:lib/slf4j-log4j12-1.6.1.jar:lib/
log4j-1.2.15.jar:conf org.apache.zookeeper.server.PurgeTxnLog <dataDir> <snapDir> -n
 <count>

api/index.html

ZooKeeper Administrator's Guide

Page 7Copyright © 2008 The Apache Software Foundation. All rights reserved.

Automatic purging of the snapshots and corresponding transaction logs was introduced
in version 3.4.0 and can be enabled via the following configuration parameters
autopurge.snapRetainCount and autopurge.purgeInterval. For more on this, see
Advanced Configuration below.

2.5.2 Debug Log Cleanup (log4j)

See the section on logging in this document. It is expected that you will setup a rolling file
appender using the in-built log4j feature. The sample configuration file in the release tar's
conf/log4j.properties provides an example of this.

2.6 Supervision

You will want to have a supervisory process that manages each of your ZooKeeper server
processes (JVM). The ZK server is designed to be "fail fast" meaning that it will shutdown
(process exit) if an error occurs that it cannot recover from. As a ZooKeeper serving cluster
is highly reliable, this means that while the server may go down the cluster as a whole is still
active and serving requests. Additionally, as the cluster is "self healing" the failed server
once restarted will automatically rejoin the ensemble w/o any manual interaction.

Having a supervisory process such as daemontools or SMF (other options for supervisory
process are also available, it's up to you which one you would like to use, these are just two
examples) managing your ZooKeeper server ensures that if the process does exit abnormally
it will automatically be restarted and will quickly rejoin the cluster.

2.7 Monitoring

The ZooKeeper service can be monitored in one of two primary ways; 1) the command
port through the use of 4 letter words and 2) JMX. See the appropriate section for your
environment/requirements.

2.8 Logging

ZooKeeper uses log4j version 1.2 as its logging infrastructure. The ZooKeeper
default log4j.properties file resides in the conf directory. Log4j requires that
log4j.properties either be in the working directory (the directory from which
ZooKeeper is run) or be accessible from the classpath.

For more information, see Log4j Default Initialization Procedure of the log4j manual.

2.9 Troubleshooting

Server not coming up because of file corruption
A server might not be able to read its database and fail to come up because of some
file corruption in the transaction logs of the ZooKeeper server. You will see some

http://cr.yp.to/daemontools.html
http://en.wikipedia.org/wiki/Service_Management_Facility
zookeeperJMX.html
http://logging.apache.org/log4j/1.2/manual.html#defaultInit

ZooKeeper Administrator's Guide

Page 8Copyright © 2008 The Apache Software Foundation. All rights reserved.

IOException on loading ZooKeeper database. In such a case, make sure all the other
servers in your ensemble are up and working. Use "stat" command on the command port
to see if they are in good health. After you have verified that all the other servers of the
ensemble are up, you can go ahead and clean the database of the corrupt server. Delete all
the files in datadir/version-2 and datalogdir/version-2/. Restart the server.

2.10 Configuration Parameters

ZooKeeper's behavior is governed by the ZooKeeper configuration file. This file is designed
so that the exact same file can be used by all the servers that make up a ZooKeeper server
assuming the disk layouts are the same. If servers use different configuration files, care must
be taken to ensure that the list of servers in all of the different configuration files match.

2.10.1 Minimum Configuration

Here are the minimum configuration keywords that must be defined in the configuration file:

clientPort
the port to listen for client connections; that is, the port that clients attempt to connect to.
dataDir
the location where ZooKeeper will store the in-memory database snapshots and, unless
specified otherwise, the transaction log of updates to the database.

Note:

Be careful where you put the transaction log. A dedicated transaction log device is key
to consistent good performance. Putting the log on a busy device will adversely effect
performance.

tickTime
the length of a single tick, which is the basic time unit used by ZooKeeper, as measured
in milliseconds. It is used to regulate heartbeats, and timeouts. For example, the
minimum session timeout will be two ticks.

2.10.2 Advanced Configuration

The configuration settings in the section are optional. You can use them to further fine tune
the behaviour of your ZooKeeper servers. Some can also be set using Java system properties,
generally of the form zookeeper.keyword. The exact system property, when available, is
noted below.

dataLogDir
(No Java system property)

ZooKeeper Administrator's Guide

Page 9Copyright © 2008 The Apache Software Foundation. All rights reserved.

This option will direct the machine to write the transaction log to the dataLogDir
rather than the dataDir. This allows a dedicated log device to be used, and helps avoid
competition between logging and snaphots.

Note:

Having a dedicated log device has a large impact on throughput and stable latencies. It is highly
recommened to dedicate a log device and set dataLogDir to point to a directory on that device,
and then make sure to point dataDir to a directory not residing on that device.

globalOutstandingLimit
(Java system property: zookeeper.globalOutstandingLimit.)

Clients can submit requests faster than ZooKeeper can process them, especially if
there are a lot of clients. To prevent ZooKeeper from running out of memory due
to queued requests, ZooKeeper will throttle clients so that there is no more than
globalOutstandingLimit outstanding requests in the system. The default limit is 1,000.
preAllocSize
(Java system property: zookeeper.preAllocSize)

To avoid seeks ZooKeeper allocates space in the transaction log file in blocks of
preAllocSize kilobytes. The default block size is 64M. One reason for changing the size
of the blocks is to reduce the block size if snapshots are taken more often. (Also, see
snapCount).
snapCount
(Java system property: zookeeper.snapCount)

ZooKeeper logs transactions to a transaction log. After snapCount transactions are
written to a log file a snapshot is started and a new transaction log file is created. The
default snapCount is 100,000.
traceFile
(Java system property: requestTraceFile)

If this option is defined, requests will be will logged to a trace file named
traceFile.year.month.day. Use of this option provides useful debugging information,
but will impact performance. (Note: The system property has no zookeeper prefix, and
the configuration variable name is different from the system property. Yes - it's not
consistent, and it's annoying.)
maxClientCnxns
(No Java system property)

Limits the number of concurrent connections (at the socket level) that a single client,
identified by IP address, may make to a single member of the ZooKeeper ensemble. This
is used to prevent certain classes of DoS attacks, including file descriptor exhaustion. The
default is 60. Setting this to 0 entirely removes the limit on concurrent connections.

ZooKeeper Administrator's Guide

Page 10Copyright © 2008 The Apache Software Foundation. All rights reserved.

clientPortAddress
New in 3.3.0: the address (ipv4, ipv6 or hostname) to listen for client connections; that is,
the address that clients attempt to connect to. This is optional, by default we bind in such
a way that any connection to the clientPort for any address/interface/nic on the server
will be accepted.
minSessionTimeout
(No Java system property)

New in 3.3.0: the minimum session timeout in milliseconds that the server will allow the
client to negotiate. Defaults to 2 times the tickTime.
maxSessionTimeout
(No Java system property)

New in 3.3.0: the maximum session timeout in milliseconds that the server will allow the
client to negotiate. Defaults to 20 times the tickTime.
fsync.warningthresholdms
(Java system property: fsync.warningthresholdms)

New in 3.3.4: A warning message will be output to the log whenever an fsync in the
Transactional Log (WAL) takes longer than this value. The values is specified in
milliseconds and defaults to 1000. This value can only be set as a system property.
autopurge.snapRetainCount
(No Java system property)

New in 3.4.0: When enabled, ZooKeeper auto purge feature retains the
autopurge.snapRetainCount most recent snapshots and the corresponding transaction
logs in the dataDir and dataLogDir respectively and deletes the rest. Defaults to 3.
Minimum value is 3.
autopurge.purgeInterval
(No Java system property)

New in 3.4.0: The time interval in hours for which the purge task has to be triggered. Set
to a positive integer (1 and above) to enable the auto purging. Defaults to 0.

2.10.3 Cluster Options

The options in this section are designed for use with an ensemble of servers -- that is, when
deploying clusters of servers.

electionAlg
(No Java system property)

Election implementation to use. A value of "0" corresponds to the original UDP-based
version, "1" corresponds to the non-authenticated UDP-based version of fast leader
election, "2" corresponds to the authenticated UDP-based version of fast leader election,

ZooKeeper Administrator's Guide

Page 11Copyright © 2008 The Apache Software Foundation. All rights reserved.

and "3" corresponds to TCP-based version of fast leader election. Currently, algorithm 3
is the default

Note:

The implementations of leader election 0, 1, and 2 are now deprecated . We have the intention
of removing them in the next release, at which point only the FastLeaderElection will be
available.

initLimit
(No Java system property)

Amount of time, in ticks (see tickTime), to allow followers to connect and sync to a
leader. Increased this value as needed, if the amount of data managed by ZooKeeper is
large.
leaderServes
(Java system property: zookeeper.leaderServes)

Leader accepts client connections. Default value is "yes". The leader machine coordinates
updates. For higher update throughput at thes slight expense of read throughput the leader
can be configured to not accept clients and focus on coordination. The default to this
option is yes, which means that a leader will accept client connections.

Note:

Turning on leader selection is highly recommended when you have more than three ZooKeeper
servers in an ensemble.

server.x=[hostname]:nnnnn[:nnnnn], etc
(No Java system property)

servers making up the ZooKeeper ensemble. When the server starts up, it determines
which server it is by looking for the file myid in the data directory. That file contains the
server number, in ASCII, and it should match x in server.x in the left hand side of this
setting.

The list of servers that make up ZooKeeper servers that is used by the clients must match
the list of ZooKeeper servers that each ZooKeeper server has.

There are two port numbers nnnnn. The first followers use to connect to the leader, and
the second is for leader election. The leader election port is only necessary if electionAlg
is 1, 2, or 3 (default). If electionAlg is 0, then the second port is not necessary. If you
want to test multiple servers on a single machine, then different ports can be used for
each server.
syncLimit
(No Java system property)

ZooKeeper Administrator's Guide

Page 12Copyright © 2008 The Apache Software Foundation. All rights reserved.

Amount of time, in ticks (see tickTime), to allow followers to sync with ZooKeeper. If
followers fall too far behind a leader, they will be dropped.
group.x=nnnnn[:nnnnn]
(No Java system property)

Enables a hierarchical quorum construction."x" is a group identifier and the numbers
following the "=" sign correspond to server identifiers. The left-hand side of the
assignment is a colon-separated list of server identifiers. Note that groups must be
disjoint and the union of all groups must be the ZooKeeper ensemble.

You will find an example here
weight.x=nnnnn
(No Java system property)

Used along with "group", it assigns a weight to a server when forming quorums. Such
a value corresponds to the weight of a server when voting. There are a few parts of
ZooKeeper that require voting such as leader election and the atomic broadcast protocol.
By default the weight of server is 1. If the configuration defines groups, but not weights,
then a value of 1 will be assigned to all servers.

You will find an example here
cnxTimeout
(Java system property: zookeeper.cnxTimeout)

Sets the timeout value for opening connections for leader election notifications. Only
applicable if you are using electionAlg 3.

Note:

Default value is 5 seconds.

4lw.commands.whitelist
(Java system property: zookeeper.4lw.commands.whitelist)

New in 3.4.10: This property contains a list of comma separated Four Letter Words
commands. It is introduced to provide fine grained control over the set of commands
ZooKeeper can execute, so users can turn off certain commands if necessary. By default
it contains all supported four letter word commands except "wchp" and "wchc", if the
property is not specified. If the property is specified, then only commands listed in the
whitelist are enabled.

Here's an example of the configuration that enables stat, ruok, conf, and isro command
while disabling the rest of Four Letter Words command:

 4lw.commands.whitelist=stat, ruok, conf, isro

zookeeperHierarchicalQuorums.html
zookeeperHierarchicalQuorums.html

ZooKeeper Administrator's Guide

Page 13Copyright © 2008 The Apache Software Foundation. All rights reserved.

Users can also use asterisk option so they don't have to include every command one by
one in the list. As an example, this will enable all four letter word commands:

 4lw.commands.whitelist=*

2.10.4 Authentication & Authorization Options

The options in this section allow control over authentication/authorization performed by the
service.

zookeeper.DigestAuthenticationProvider.superDigest
(Java system property only: zookeeper.DigestAuthenticationProvider.superDigest)

By default this feature is disabled

New in 3.2: Enables a ZooKeeper ensemble administrator to access the znode hierarchy
as a "super" user. In particular no ACL checking occurs for a user authenticated as super.

org.apache.zookeeper.server.auth.DigestAuthenticationProvider can be used to generate
the superDigest, call it with one parameter of "super:<password>". Provide the generated
"super:<data>" as the system property value when starting each server of the ensemble.

When authenticating to a ZooKeeper server (from a ZooKeeper client) pass a scheme of
"digest" and authdata of "super:<password>". Note that digest auth passes the authdata
in plaintext to the server, it would be prudent to use this authentication method only on
localhost (not over the network) or over an encrypted connection.

2.10.5 Experimental Options/Features

New features that are currently considered experimental.

Read Only Mode Server
(Java system property: readonlymode.enabled)

New in 3.4.0: Setting this value to true enables Read Only Mode server support (disabled
by default). ROM allows clients sessions which requested ROM support to connect to the
server even when the server might be partitioned from the quorum. In this mode ROM
clients can still read values from the ZK service, but will be unable to write values and
see changes from other clients. See ZOOKEEPER-784 for more details.

2.10.6 Unsafe Options

The following options can be useful, but be careful when you use them. The risk of each is
explained along with the explanation of what the variable does.

forceSync

ZooKeeper Administrator's Guide

Page 14Copyright © 2008 The Apache Software Foundation. All rights reserved.

(Java system property: zookeeper.forceSync)

Requires updates to be synced to media of the transaction log before finishing processing
the update. If this option is set to no, ZooKeeper will not require updates to be synced to
the media.
jute.maxbuffer:
(Java system property: jute.maxbuffer)

This option can only be set as a Java system property. There is no zookeeper prefix on
it. It specifies the maximum size of the data that can be stored in a znode. The default
is 0xfffff, or just under 1M. If this option is changed, the system property must be set
on all servers and clients otherwise problems will arise. This is really a sanity check.
ZooKeeper is designed to store data on the order of kilobytes in size.
skipACL
(Java system property: zookeeper.skipACL)

Skips ACL checks. This results in a boost in throughput, but opens up full access to the
data tree to everyone.

2.10.7 Disabling data directory autocreation

Backported from 3.5: The default behavior of a ZooKeeper server is to automatically create
the data directory (specified in the configuration file) when started if that directory does not
already exist. This can be inconvenient and even dangerous in some cases. Take the case
where a configuration change is made to a running server, wherein the dataDir parameter is
accidentally changed. When the ZooKeeper server is restarted it will create this non-existent
directory and begin serving - with an empty znode namespace. This scenario can result in an
effective "split brain" situation (i.e. data in both the new invalid directory and the original
valid data store). As such is would be good to have an option to turn off this autocreate
behavior. In general for production environments this should be done, unfortunately however
the default legacy behavior cannot be changed at this point and therefore this must be done
on a case by case basis. This is left to users and to packagers of ZooKeeper distributions.

When running zkServer.sh autocreate can be disabled by setting the environment
variable ZOO_DATADIR_AUTOCREATE_DISABLE to 1. When running
ZooKeeper servers directly from class files this can be accomplished by
setting zookeeper.datadir.autocreate=false on the java command line, i.e. -
Dzookeeper.datadir.autocreate=false

When this feature is disabled, and the ZooKeeper server determines that the required
directories do not exist it will generate an error and refuse to start.

A new script zkServer-initialize.sh is provided to support this new feature. If autocreate is
disabled it is necessary for the user to first install ZooKeeper, then create the data directory
(and potentially txnlog directory), and then start the server. Otherwise as mentioned in the

ZooKeeper Administrator's Guide

Page 15Copyright © 2008 The Apache Software Foundation. All rights reserved.

previous paragraph the server will not start. Running zkServer-initialize.sh will create the
required directories, and optionally setup the myid file (optional command line parameter).
This script can be used even if the autocreate feature itself is not used, and will likely be of
use to users as this (setup, including creation of the myid file) has been an issue for users
in the past. Note that this script ensures the data directories exist only, it does not create a
config file, but rather requires a config file to be available in order to execute.

2.10.8 Communication using the Netty framework

New in 3.4: Netty is an NIO based client/server communication framework, it simplifies
(over NIO being used directly) many of the complexities of network level communication
for java applications. Additionally the Netty framework has built in support for encryption
(SSL) and authentication (certificates). These are optional features and can be turned on or
off individually.

Prior to version 3.4 ZooKeeper has always used NIO directly, however in versions
3.4 and later Netty is supported as an option to NIO (replaces). NIO continues
to be the default, however Netty based communication can be used in place of
NIO by setting the environment variable "zookeeper.serverCnxnFactory" to
"org.apache.zookeeper.server.NettyServerCnxnFactory". You have the option of setting this
on either the client(s) or server(s), typically you would want to set this on both, however that
is at your discretion.

TBD - tuning options for netty - currently there are none that are netty specific but we should
add some. Esp around max bound on the number of reader worker threads netty creates.

TBD - how to manage encryption

TBD - how to manage certificates

2.11 ZooKeeper Commands: The Four Letter Words

ZooKeeper responds to a small set of commands. Each command is composed of four letters.
You issue the commands to ZooKeeper via telnet or nc, at the client port.

Three of the more interesting commands: "stat" gives some general information about the
server and connected clients, while "srvr" and "cons" give extended details on server and
connections respectively.

conf
New in 3.3.0: Print details about serving configuration.
cons
New in 3.3.0: List full connection/session details for all clients connected to this server.
Includes information on numbers of packets received/sent, session id, operation latencies,
last operation performed, etc...

http://jboss.org/netty

ZooKeeper Administrator's Guide

Page 16Copyright © 2008 The Apache Software Foundation. All rights reserved.

crst
New in 3.3.0: Reset connection/session statistics for all connections.
dump
Lists the outstanding sessions and ephemeral nodes. This only works on the leader.
envi
Print details about serving environment
ruok
Tests if server is running in a non-error state. The server will respond with imok if it is
running. Otherwise it will not respond at all.

A response of "imok" does not necessarily indicate that the server has joined the quorum,
just that the server process is active and bound to the specified client port. Use "stat" for
details on state wrt quorum and client connection information.
srst
Reset server statistics.
srvr
New in 3.3.0: Lists full details for the server.
stat
Lists brief details for the server and connected clients.
wchs
New in 3.3.0: Lists brief information on watches for the server.
wchc
New in 3.3.0: Lists detailed information on watches for the server, by session.
This outputs a list of sessions(connections) with associated watches (paths). Note,
depending on the number of watches this operation may be expensive (ie impact server
performance), use it carefully.
wchp
New in 3.3.0: Lists detailed information on watches for the server, by path. This outputs
a list of paths (znodes) with associated sessions. Note, depending on the number of
watches this operation may be expensive (ie impact server performance), use it carefully.
mntr
New in 3.4.0: Outputs a list of variables that could be used for monitoring the health of
the cluster.

$ echo mntr | nc localhost 2185

zk_version 3.4.0
zk_avg_latency 0
zk_max_latency 0
zk_min_latency 0
zk_packets_received 70
zk_packets_sent 69
zk_outstanding_requests 0
zk_server_state leader

ZooKeeper Administrator's Guide

Page 17Copyright © 2008 The Apache Software Foundation. All rights reserved.

zk_znode_count 4
zk_watch_count 0
zk_ephemerals_count 0
zk_approximate_data_size 27
zk_followers 4 - only exposed by the Leader
zk_synced_followers 4 - only exposed by the Leader
zk_pending_syncs 0 - only exposed by the Leader
zk_open_file_descriptor_count 23 - only available on Unix platforms
zk_max_file_descriptor_count 1024 - only available on Unix platforms
zk_fsync_threshold_exceed_count 0
zk_last_proposal_size 23
zk_min_proposal_size 23
zk_max_proposal_size 64

The output is compatible with java properties format and the content may change over
time (new keys added). Your scripts should expect changes.

ATTENTION: Some of the keys are platform specific and some of the keys are only
exported by the Leader.

The output contains multiple lines with the following format:

key \t value

Here's an example of the ruok command:

$ echo ruok | nc 127.0.0.1 5111
imok

2.12 Data File Management

ZooKeeper stores its data in a data directory and its transaction log in a transaction log
directory. By default these two directories are the same. The server can (and should) be
configured to store the transaction log files in a separate directory than the data files.
Throughput increases and latency decreases when transaction logs reside on a dedicated log
devices.

2.12.1 The Data Directory

This directory has two files in it:

• myid - contains a single integer in human readable ASCII text that represents the server
id.

• snapshot.<zxid> - holds the fuzzy snapshot of a data tree.

Each ZooKeeper server has a unique id. This id is used in two places: the myid file and
the configuration file. The myid file identifies the server that corresponds to the given data
directory. The configuration file lists the contact information for each server identified by
its server id. When a ZooKeeper server instance starts, it reads its id from the myid file and

ZooKeeper Administrator's Guide

Page 18Copyright © 2008 The Apache Software Foundation. All rights reserved.

then, using that id, reads from the configuration file, looking up the port on which it should
listen.

The snapshot files stored in the data directory are fuzzy snapshots in the sense that during
the time the ZooKeeper server is taking the snapshot, updates are occurring to the data tree.
The suffix of the snapshot file names is the zxid, the ZooKeeper transaction id, of the last
committed transaction at the start of the snapshot. Thus, the snapshot includes a subset of
the updates to the data tree that occurred while the snapshot was in process. The snapshot,
then, may not correspond to any data tree that actually existed, and for this reason we refer
to it as a fuzzy snapshot. Still, ZooKeeper can recover using this snapshot because it takes
advantage of the idempotent nature of its updates. By replaying the transaction log against
fuzzy snapshots ZooKeeper gets the state of the system at the end of the log.

2.12.2 The Log Directory

The Log Directory contains the ZooKeeper transaction logs. Before any update takes place,
ZooKeeper ensures that the transaction that represents the update is written to non-volatile
storage. A new log file is started each time a snapshot is begun. The log file's suffix is the
first zxid written to that log.

2.12.3 File Management

The format of snapshot and log files does not change between standalone ZooKeeper servers
and different configurations of replicated ZooKeeper servers. Therefore, you can pull these
files from a running replicated ZooKeeper server to a development machine with a stand-
alone ZooKeeper server for trouble shooting.

Using older log and snapshot files, you can look at the previous state of ZooKeeper servers
and even restore that state. The LogFormatter class allows an administrator to look at the
transactions in a log.

The ZooKeeper server creates snapshot and log files, but never deletes them. The retention
policy of the data and log files is implemented outside of the ZooKeeper server. The server
itself only needs the latest complete fuzzy snapshot and the log files from the start of that
snapshot. See the maintenance section in this document for more details on setting a retention
policy and maintenance of ZooKeeper storage.

Note:

The data stored in these files is not encrypted. In the case of storing sensitive data in ZooKeeper
(which is fairly uncommon), necessary measures need to be taken to prevent unauthorized access.
Such measures are external to ZooKeeper (e.g., control access to the files) and depend on the
individual settings in which it is being deployed.

ZooKeeper Administrator's Guide

Page 19Copyright © 2008 The Apache Software Foundation. All rights reserved.

2.12.4 Recovery - TxnLogToolkit

TxnLogToolkit is a command line tool shipped with ZooKeeper which is capable of
recovering transaction log entries with broken CRC.

Running it without any command line parameters or with the "-h,--help" argument, it outputs
the following help page:

 $ bin/zkTxnLogToolkit.sh

 usage: TxnLogToolkit [-dhrv] txn_log_file_name
 -d,--dump Dump mode. Dump all entries of the log file. (this is the default)
 -h,--help Print help message
 -r,--recover Recovery mode. Re-calculate CRC for broken entries.
 -v,--verbose Be verbose in recovery mode: print all entries, not just fixed
 ones.
 -y,--yes Non-interactive mode: repair all CRC errors without asking

The default behaviour is safe: it dumps the entries of the given transaction log file to the
screen: (same as using '-d,--dump' parameter)

 $ bin/zkTxnLogToolkit.sh log.100000001
 ZooKeeper Transactional Log File with dbid 0 txnlog format version 2
 4/5/18 2:15:58 PM CEST session 0x16295bafcc40000 cxid 0x0 zxid 0x100000001
 createSession 30000
 CRC ERROR - 4/5/18 2:16:05 PM CEST session 0x16295bafcc40000 cxid 0x1 zxid
 0x100000002 closeSession null
 4/5/18 2:16:05 PM CEST session 0x16295bafcc40000 cxid 0x1 zxid 0x100000002
 closeSession null
 4/5/18 2:16:12 PM CEST session 0x26295bafcc90000 cxid 0x0 zxid 0x100000003
 createSession 30000
 4/5/18 2:17:34 PM CEST session 0x26295bafcc90000 cxid 0x0 zxid 0x200000001
 closeSession null
 4/5/18 2:17:34 PM CEST session 0x16295bd23720000 cxid 0x0 zxid 0x200000002
 createSession 30000
 4/5/18 2:18:02 PM CEST session 0x16295bd23720000 cxid 0x2 zxid 0x200000003 create
 '/andor,#626262,v{s{31,s{'world,'anyone}}},F,1
 EOF reached after 6 txns.

There's a CRC error in the 2nd entry of the above transaction log file. In dump mode,
the toolkit only prints this information to the screen without touching the original file. In
recovery mode (-r,--recover flag) the original file still remains untouched and all transactions
will be copied over to a new txn log file with ".fixed" suffix. It recalculates CRC values and
copies the calculated value, if it doesn't match the original txn entry. By default, the tool
works interactively: it asks for confirmation whenever CRC error encountered.

 $ bin/zkTxnLogToolkit.sh -r log.100000001
 ZooKeeper Transactional Log File with dbid 0 txnlog format version 2

ZooKeeper Administrator's Guide

Page 20Copyright © 2008 The Apache Software Foundation. All rights reserved.

 CRC ERROR - 4/5/18 2:16:05 PM CEST session 0x16295bafcc40000 cxid 0x1 zxid
 0x100000002 closeSession null
 Would you like to fix it (Yes/No/Abort) ?

Answering Yes means the newly calculated CRC value will be outputted to the new file. No
means that the original CRC value will be copied over. Abort will abort the entire operation
and exits. (In this case the ".fixed" will not be deleted and left in a half-complete state:
contains only entries which have already been processed or only the header if the operation
was aborted at the first entry.)

 $ bin/zkTxnLogToolkit.sh -r log.100000001
 ZooKeeper Transactional Log File with dbid 0 txnlog format version 2
 CRC ERROR - 4/5/18 2:16:05 PM CEST session 0x16295bafcc40000 cxid 0x1 zxid
 0x100000002 closeSession null
 Would you like to fix it (Yes/No/Abort) ? y
 EOF reached after 6 txns.
 Recovery file log.100000001.fixed has been written with 1 fixed CRC error(s)

The default behaviour of recovery is to be silent: only entries with CRC error get printed to
the screen. One can turn on verbose mode with the -v,--verbose parameter to see all records.
Interactive mode can be turned off with the -y,--yes parameter. In this case all CRC errors
will be fixed in the new transaction file.

2.13 Things to Avoid

Here are some common problems you can avoid by configuring ZooKeeper correctly:

inconsistent lists of servers
The list of ZooKeeper servers used by the clients must match the list of ZooKeeper
servers that each ZooKeeper server has. Things work okay if the client list is a subset of
the real list, but things will really act strange if clients have a list of ZooKeeper servers
that are in different ZooKeeper clusters. Also, the server lists in each Zookeeper server
configuration file should be consistent with one another.
incorrect placement of transasction log
The most performance critical part of ZooKeeper is the transaction log. ZooKeeper syncs
transactions to media before it returns a response. A dedicated transaction log device
is key to consistent good performance. Putting the log on a busy device will adversely
effect performance. If you only have one storage device, put trace files on NFS and
increase the snapshotCount; it doesn't eliminate the problem, but it should mitigate it.
incorrect Java heap size
You should take special care to set your Java max heap size correctly. In particular, you
should not create a situation in which ZooKeeper swaps to disk. The disk is death to

ZooKeeper Administrator's Guide

Page 21Copyright © 2008 The Apache Software Foundation. All rights reserved.

ZooKeeper. Everything is ordered, so if processing one request swaps the disk, all other
queued requests will probably do the same. the disk. DON'T SWAP.

Be conservative in your estimates: if you have 4G of RAM, do not set the Java max heap
size to 6G or even 4G. For example, it is more likely you would use a 3G heap for a 4G
machine, as the operating system and the cache also need memory. The best and only
recommend practice for estimating the heap size your system needs is to run load tests,
and then make sure you are well below the usage limit that would cause the system to
swap.
Publicly accessible deployment
A ZooKeeper ensemble is expected to operate in a trusted computing environment. It is
thus recommended to deploy ZooKeeper behind a firewall.

2.14 Best Practices

For best results, take note of the following list of good Zookeeper practices:

For multi-tennant installations see the section detailing ZooKeeper "chroot" support, this can
be very useful when deploying many applications/services interfacing to a single ZooKeeper
cluster.

zookeeperProgrammers.html#ch_zkSessions

	Table of contents
	1 Deployment
	1.1 System Requirements
	1.1.1 Supported Platforms
	1.1.2 Required Software

	1.2 Clustered (Multi-Server) Setup
	1.3 Single Server and Developer Setup

	2 Administration
	2.1 Designing a ZooKeeper Deployment
	2.1.1 Cross Machine Requirements
	2.1.2 Single Machine Requirements

	2.2 Provisioning
	2.3 Things to Consider: ZooKeeper Strengths and Limitations
	2.4 Administering
	2.5 Maintenance
	2.5.1 Ongoing Data Directory Cleanup
	2.5.2 Debug Log Cleanup (log4j)

	2.6 Supervision
	2.7 Monitoring
	2.8 Logging
	2.9 Troubleshooting
	2.10 Configuration Parameters
	2.10.1 Minimum Configuration
	2.10.2 Advanced Configuration
	2.10.3 Cluster Options
	2.10.4 Authentication & Authorization Options
	2.10.5 Experimental Options/Features
	2.10.6 Unsafe Options
	2.10.7 Disabling data directory autocreation
	2.10.8 Communication using the Netty framework

	2.11 ZooKeeper Commands: The Four Letter Words
	2.12 Data File Management
	2.12.1 The Data Directory
	2.12.2 The Log Directory
	2.12.3 File Management
	2.12.4 Recovery - TxnLogToolkit

	2.13 Things to Avoid
	2.14 Best Practices

