
Copyright © 2008 The Apache Software Foundation. All rights reserved.

ZooKeeper Programmer's Guide

Developing Distributed Applications that use ZooKeeper

by

Table of contents

1 Introduction.. 3

2 The ZooKeeper Data Model.. 3

 2.1 ZNodes.. 4

 2.2 Time in ZooKeeper...5

 2.3 ZooKeeper Stat Structure... 6

3 ZooKeeper Sessions... 7

4 ZooKeeper Watches... 10

 4.1 What ZooKeeper Guarantees about Watches... 11

 4.2 Things to Remember about Watches..11

5 ZooKeeper access control using ACLs..11

 5.1 ACL Permissions.. 12

6 Pluggable ZooKeeper authentication... 15

7 Consistency Guarantees... 17

8 Bindings..18

 8.1 Java Binding... 18

 8.2 C Binding..20

9 Building Blocks: A Guide to ZooKeeper Operations..22

 9.1 Handling Errors...22

 9.2 Connecting to ZooKeeper...22

 9.3 Read Operations..22

ZooKeeper Programmer's Guide

Page 2Copyright © 2008 The Apache Software Foundation. All rights reserved.

 9.4 Write Operations...22

 9.5 Handling Watches...22

 9.6 Miscelleaneous ZooKeeper Operations.. 22

10 Program Structure, with Simple Example..22

11 Gotchas: Common Problems and Troubleshooting... 22

ZooKeeper Programmer's Guide

Page 3Copyright © 2008 The Apache Software Foundation. All rights reserved.

1 Introduction

This document is a guide for developers wishing to create distributed applications that
take advantage of ZooKeeper's coordination services. It contains conceptual and practical
information.

The first four sections of this guide present higher level discussions of various ZooKeeper
concepts. These are necessary both for an understanding of how ZooKeeper works as well
how to work with it. It does not contain source code, but it does assume a familiarity with the
problems associated with distributed computing. The sections in this first group are:

• The ZooKeeper Data Model
• ZooKeeper Sessions
• ZooKeeper Watches
• Consistency Guarantees

The next four sections provide practical programming information. These are:

• Building Blocks: A Guide to ZooKeeper Operations
• Bindings
• Program Structure, with Simple Example [tbd]
• Gotchas: Common Problems and Troubleshooting

The book concludes with an appendix containing links to other useful, ZooKeeper-related
information.

Most of information in this document is written to be accessible as stand-alone reference
material. However, before starting your first ZooKeeper application, you should probably at
least read the chaptes on the ZooKeeper Data Model and ZooKeeper Basic Operations. Also,
the Simple Programmming Example [tbd] is helpful for understanding the basic structure of
a ZooKeeper client application.

2 The ZooKeeper Data Model

ZooKeeper has a hierarchal name space, much like a distributed file system. The only
difference is that each node in the namespace can have data associated with it as well as
children. It is like having a file system that allows a file to also be a directory. Paths to nodes
are always expressed as canonical, absolute, slash-separated paths; there are no relative
reference. Any unicode character can be used in a path subject to the following constraints:

• The null character (\u0000) cannot be part of a path name. (This causes problems with the
C binding.)

• The following characters can't be used because they don't display well, or render in
confusing ways: \u0001 - \u0019 and \u007F - \u009F.

ZooKeeper Programmer's Guide

Page 4Copyright © 2008 The Apache Software Foundation. All rights reserved.

• The following characters are not allowed: \ud800 -uF8FFF, \uFFF0-uFFFF, \uXFFFE -
\uXFFFF (where X is a digit 1 - E), \uF0000 - \uFFFFF.

• The "." character can be used as part of another name, but "." and ".." cannot alone be
used to indicate a node along a path, because ZooKeeper doesn't use relative paths. The
following would be invalid: "/a/b/./c" or "/a/b/../c".

• The token "zookeeper" is reserved.

2.1 ZNodes

Every node in a ZooKeeper tree is referred to as a znode. Znodes maintain a stat structure
that includes version numbers for data changes, acl changes. The stat structure also has
timestamps. The version number, together with the timestamp allow ZooKeeper to validate
the cache and to coordinate updates. Each time a znode's data changes, the version number
increases. For instance, whenever a client retrieves data, it also receives the version of the
data. And when a client performs an update or a delete, it must supply the version of the
data of the znode it is changing. If the version it supplies doesn't match the actual version
of the data, the update will fail. (This behavior can be overridden. For more information
see...)[tbd...]

Note:

In distributed application engineering, the word node can refer to a generic host machine, a server, a
member of an ensemble, a client process, etc. In the ZooKeeper documentation, znodes refer to the
data nodes. Servers refer to machines that make up the ZooKeeper service; quorum peers refer to
the servers that make up an ensemble; client refers to any host or process which uses a ZooKeeper
service.

Znodes are the main enitity that a programmer access. They have several characteristics that
are worth mentioning here.

2.1.1 Watches

Clients can set watches on znodes. Changes to that znode trigger the watch and then clear the
watch. When a watch triggers, ZooKeeper sends the client a notification. More information
about watches can be found in the section ZooKeeper Watches.

2.1.2 Data Access

The data stored at each znode in a namespace is read and written atomically. Reads get all the
data bytes associated with a znode and a write replaces all the data. Each node has an Access
Control List (ACL) that restricts who can do what.

ZooKeeper was not designed to be a general database or large object store. Instead,
it manages coordination data. This data can come in the form of configuration, status

ZooKeeper Programmer's Guide

Page 5Copyright © 2008 The Apache Software Foundation. All rights reserved.

information, rendezvous, etc. A common property of the various forms of coordination data
is that they are relatively small: measured in kilobytes. The ZooKeeper client and the server
implementations have sanity checks to ensure that znodes have less than 1M of data, but the
data should be much less than that on average. Operating on relatively large data sizes will
cause some operations to take much more time than others and will affect the latencies of
some operations because of the extra time needed to move more data over the network and
onto storage media. If large data storage is needed, the usually pattern of dealing with such
data is to store it on a bulk storage system, such as NFS or HDFS, and store pointers to the
storage locations in ZooKeeper.

2.1.3 Ephemeral Nodes

ZooKeeper also has the notion of ephemeral nodes. These znodes exists as long as the
session that created the znode is active. When the session ends the znode is deleted. Because
of this behavior ephemeral znodes are not allowed to have children.

2.1.4 Sequence Nodes -- Unique Naming

When creating a znode you can also request that ZooKeeper append a monotonically
increasing counter to the end of path. This counter is unique to the parent znode. The counter
has a format of %010d -- that is 10 digits with 0 (zero) padding (the counter is formatted in
this way to simplify sorting), i.e. "<path>0000000001". See Queue Recipe for an example
use of this feature. Note: the counter used to store the next sequence number is a signed int
(4bytes) maintained by the parent node, the counter will overflow when incremented beyond
2147483647 (resulting in a name "<path>-2147483647").

2.2 Time in ZooKeeper

ZooKeeper tracks time multiple ways:

• Zxid

Every change to the ZooKeeper state receives a stamp in the form of a zxid (ZooKeeper
Transaction Id). This exposes the total ordering of all changes to ZooKeeper. Each
change will have a unique zxid and if zxid1 is smaller than zxid2 then zxid1 happened
before zxid2.

• Version numbers

Every change to a a node will cause an increase to one of the version numbers of that
node. The three version numbers are version (number of changes to the data of a znode),
cversion (number of changes to the children of a znode), and aversion (number of
changes to the ACL of a znode).

• Ticks

recipes.html#sc_recipes_Queues

ZooKeeper Programmer's Guide

Page 6Copyright © 2008 The Apache Software Foundation. All rights reserved.

When using multi-server ZooKeeper, servers use ticks to define timing of events such as
status uploads, session timeouts, connection timeouts between peers, etc. The tick time is
only indirectly exposed through the minimum session timeout (2 times the tick time); if
a client requests a session timeout less than the minimum session timeout, the server will
tell the client that the session timeout is actually the minimum session timeout.

• Real time

ZooKeeper doesn't use real time, or clock time, at all except to put timestamps into the
stat structure on znode creation and znode modification.

2.3 ZooKeeper Stat Structure

The Stat structure for each znode in ZooKeeper is made up of the following fields:

• czxid

The zxid of the change that caused this znode to be created.
• mzxid

The zxid of the change that last modified this znode.
• ctime

The time in milliseconds from epoch when this znode was created.
• mtime

The time in milliseconds from epoch when this znode was last modified.
• version

The number of changes to the data of this znode.
• cversion

The number of changes to the children of this znode.
• aversion

The number of changes to the ACL of this znode.
• ephemeralOwner

The session id of the owner of this znode if the znode is an ephemeral node. If it is not an
ephemeral node, it will be zero.

• dataLength

The length of the data field of this znode.
• numChildren

The number of children of this znode.

ZooKeeper Programmer's Guide

Page 7Copyright © 2008 The Apache Software Foundation. All rights reserved.

3 ZooKeeper Sessions

A ZooKeeper client establishes a session with the ZooKeeper service by creating a
handle to the service using a language binding. Once created, the handle starts of in the
CONNECTING state and the client library tries to connect to one of the servers that make
up the ZooKeeper service at which point it switches to the CONNECTED state. During
normal operation will be in one of these two states. If an unrecoverable error occurs, such as
session expiration or authentication failure, or if the application explicitly closes the handle,
the handle will move to the CLOSED state. The following figure shows the possible state
transitions of a ZooKeeper client:

To create a client session the application code must provide a connection string containing
a comma separated list of host:port pairs, each corresponding to a ZooKeeper server (e.g.
"127.0.0.1:4545" or "127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002"). The ZooKeeper client
library will pick an arbitrary server and try to connect to it. If this connection fails, or if the
client becomes disconnected from the server for any reason, the client will automatically try
the next server in the list, until a connection is (re-)established.

Added in 3.2.0: An optional "chroot" suffix may also be appended to the connection string.
This will run the client commands while interpreting all paths relative to this root (similar to
the unix chroot command). If used the example would look like: "127.0.0.1:4545/app/a" or
"127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002/app/a" where the client would be rooted at "/
app/a" and all paths would be relative to this root - ie getting/setting/etc... "/foo/bar" would

ZooKeeper Programmer's Guide

Page 8Copyright © 2008 The Apache Software Foundation. All rights reserved.

result in operations being run on "/app/a/foo/bar" (from the server perspective). This feature
is particularly useful in multi-tenant environments where each user of a particular ZooKeeper
service could be rooted differently. This makes re-use much simpler as each user can code
his/her application as if it were rooted at "/", while actual location (say /app/a) could be
determined at deployment time.

When a client gets a handle to the ZooKeeper service, ZooKeeper creates a ZooKeeper
session, represented as a 64-bit number, that it assigns to the client. If the client connects to a
different ZooKeeper server, it will send the session id as a part of the connection handshake.
As a security measure, the server creates a password for the session id that any ZooKeeper
server can validate.The password is sent to the client with the session id when the client
establishes the session. The client sends this password with the session id whenever it
reestablishes the session with a new server.

One of the parameters to the ZooKeeper client library call to create a ZooKeeper session
is the session timeout in milliseconds. The client sends a requested timeout, the server
responds with the timeout that it can give the client. The current implementation requires
that the timeout be a minimum of 2 times the tickTime (as set in the server configuration)
and a maximum of 20 times the tickTime. The ZooKeeper client API allows access to the
negotiated timeout.

When a client (session) becomes partitioned from the ZK serving cluster it will begin
searching the list of servers that were specified during session creation. Eventually, when
connectivity between the client and at least one of the servers is re-established, the session
will either again transition to the "connected" state (if reconnected within the session timeout
value) or it will transition to the "expired" state (if reconnected after the session timeout). It
is not advisable to create a new session object (a new ZooKeeper.class or zookeeper handle
in the c binding) for disconnection. The ZK client library will handle reconnect for you. In
particular we have heuristics built into the client library to handle things like "herd effect",
etc... Only create a new session when you are notified of session expiration (mandatory).

Session expiration is managed by the ZooKeeper cluster itself, not by the client. When
the ZK client establishes a session with the cluster it provides a "timeout" value detailed
above. This value is used by the cluster to determine when the client's session expires.
Expirations happens when the cluster does not hear from the client within the specified
session timeout period (i.e. no heartbeat). At session expiration the cluster will delete any/all
ephemeral nodes owned by that session and immediately notify any/all connected clients of
the change (anyone watching those znodes). At this point the client of the expired session is
still disconnected from the cluster, it will not be notified of the session expiration until/unless
it is able to re-establish a connection to the cluster. The client will stay in disconnected state
until the TCP connection is re-established with the cluster, at which point the watcher of the
expired session will receive the "session expired" notification.

ZooKeeper Programmer's Guide

Page 9Copyright © 2008 The Apache Software Foundation. All rights reserved.

Example state transitions for an expired session as seen by the expired session's watcher:
1. 'connected' : session is established and client is communicating with cluster (client/server

communication is operating properly)
2. client is partitioned from the cluster
3. 'disconnected' : client has lost connectivity with the cluster
4. time elapses, after 'timeout' period the cluster expires the session, nothing is seen by

client as it is disconnected from cluster
5. time elapses, the client regains network level connectivity with the cluster
6. 'expired' : eventually the client reconnects to the cluster, it is then notified of the

expiration

Another parameter to the ZooKeeper session establishment call is the default watcher.
Watchers are notified when any state change occurs in the client. For example if the client
loses connectivity to the server the client will be notified, or if the client's session expires,
etc... This watcher should consider the initial state to be disconnected (i.e. before any state
changes events are sent to the watcher by the client lib). In the case of a new connection, the
first event sent to the watcher is typically the session connection event.

The session is kept alive by requests sent by the client. If the session is idle for a period of
time that would timeout the session, the client will send a PING request to keep the session
alive. This PING request not only allows the ZooKeeper server to know that the client is still
active, but it also allows the client to verify that its connection to the ZooKeeper server is still
active. The timing of the PING is conservative enough to ensure reasonable time to detect a
dead connection and reconnect to a new server.

Once a connection to the server is successfully established (connected) there are basically
two cases where the client lib generates connectionloss (the result code in c binding,
exception in Java -- see the API documentation for binding specific details) when either a
synchronous or asynchronous operation is performed and one of the following holds:
1. The application calls an operation on a session that is no longer alive/valid
2. The ZooKeeper client disconnects from a server when there are pending operations to

that server, i.e., there is a pending asynchronous call.

Added in 3.2.0 -- SessionMovedException. There is an internal exception that is generally
not seen by clients called the SessionMovedException. This exception occurs because a
request was received on a connection for a session which has be reestablished on a different
server. The normal cause of this error is a client that sends a request to a server, but the
network packet gets delayed, so the client times out and connects to a new server. When the
delayed packet arrives at the first server, the old server detects that the session has moved,
and closes the client connection. Clients normally do not see this error since they do not read
from those old connections. (Old connections are usually closed.) One situation in which
this condition can be seen is when two clients try to reestablish the same connection using

ZooKeeper Programmer's Guide

Page 10Copyright © 2008 The Apache Software Foundation. All rights reserved.

a saved session id and password. One of the clients will reestablish the connection and the
second client will be disconnected (causing the pair to attempt to re-establish it's connection/
session indefinitely).

4 ZooKeeper Watches

All of the read operations in ZooKeeper - getData(), getChildren(), and exists() - have the
option of setting a watch as a side effect. Here is ZooKeeper's definition of a watch: a watch
event is one-time trigger, sent to the client that set the watch, which occurs when the data for
which the watch was set changes. There are three key points to consider in this definition of a
watch:

• One-time trigger

One watch event will be sent to the client when the data has changed. For example, if a
client does a getData("/znode1", true) and later the data for /znode1 is changed or deleted,
the client will get a watch event for /znode1. If /znode1 changes again, no watch event
will be sent unless the client has done another read that sets a new watch.

• Sent to the client

This implies that an event is on the way to the client, but may not reach the client before
the successful return code to the change operation reaches the client that initiated the
change. Watches are sent asynchronously to watchers. ZooKeeper provides an ordering
guarantee: a client will never see a change for which it has set a watch until it first sees
the watch event. Network delays or other factors may cause different clients to see
watches and return codes from updates at different times. The key point is that everything
seen by the different clients will have a consistent order.

• The data for which the watch was set

This refers to the different ways a node can change. It helps to think of ZooKeeper as
maintaining two lists of watches: data watches and child watches. getData() and exists()
set data watches. getChildren() sets child watches. Alternatively, it may help to think of
watches being set according to the kind of data returned. getData() and exists() return
information about the data of the node, whereas getChildren() returns a list of children.
Thus, setData() will trigger data watches for the znode being set (assuming the set is
successful). A successful create() will trigger a data watch for the znode being created
and a child watch for the parent znode. A successful delete() will trigger both a data
watch and a child watch (since there can be no more children) for a znode being deleted
as well as a child watch for the parent znode.

Watches are maintained locally at the ZooKeeper server to which the client is connected.
This allows watches to be light weight to set, maintain, and dispatch. When a client connects
to a new server, the watch will be triggered for any session events. Watches will not be
received while disconnected from a server. When a client reconnects, any previously

ZooKeeper Programmer's Guide

Page 11Copyright © 2008 The Apache Software Foundation. All rights reserved.

registered watches will be reregistered and triggered if needed. In general this all occurs
transparently. There is one case where a watch may be missed: a watch for the existance of a
znode not yet created will be missed if the znode is created and deleted while disconnected.

4.1 What ZooKeeper Guarantees about Watches

With regard to watches, ZooKeeper maintains these guarantees:

• Watches are ordered with respect to other events, other watches, and asynchronous
replies. The ZooKeeper client libraries ensures that everything is dispatched in order.

• A client will see a watch event for a znode it is watching before seeing the new data that
corresponds to that znode.

• The order of watch events from ZooKeeper corresponds to the order of the updates as
seen by the ZooKeeper service.

4.2 Things to Remember about Watches

• Watches are one time triggers; if you get a watch event and you want to get notified of
future changes, you must set another watch.

• Because watches are one time triggers and there is latency between getting the event
and sending a new request to get a watch you cannot reliably see every change that
happens to a node in ZooKeeper. Be prepared to handle the case where the znode changes
multiple times between getting the event and setting the watch again. (You may not care,
but at least realize it may happen.)

• A watch object, or function/context pair, will only be triggered once for a given
notification. For example, if the same watch object is registered for an exists and a
getData call for the same file and that file is then deleted, the watch object would only be
invoked once with the deletion notification for the file.

• When you disconnect from a server (for example, when the server fails), you will not get
any watches until the connection is reestablished. For this reason session events are sent
to all outstanding watch handlers. Use session events to go into a safe mode: you will not
be receiving events while disconnected, so your process should act conservatively in that
mode.

5 ZooKeeper access control using ACLs

ZooKeeper uses ACLs to control access to its znodes (the data nodes of a ZooKeeper data
tree). The ACL implementation is quite similar to UNIX file access permissions: it employs
permission bits to allow/disallow various operations against a node and the scope to which
the bits apply. Unlike standard UNIX permissions, a ZooKeeper node is not limited by the

ZooKeeper Programmer's Guide

Page 12Copyright © 2008 The Apache Software Foundation. All rights reserved.

three standard scopes for user (owner of the file), group, and world (other). ZooKeeper
does not have a notion of an owner of a znode. Instead, an ACL specifies sets of ids and
permissions that are associated with those ids.

Note also that an ACL pertains only to a specific znode. In particular it does not apply to
children. For example, if /app is only readable by ip:172.16.16.1 and /app/status is world
readable, anyone will be able to read /app/status; ACLs are not recursive.

ZooKeeper supports pluggable authentication schemes. Ids are specified using the form
scheme:id, where scheme is a the authentication scheme that the id corresponds to. For
example, ip:172.16.16.1 is an id for a host with the address 172.16.16.1.

When a client connects to ZooKeeper and authenticates itself, ZooKeeper associates all the
ids that correspond to a client with the clients connection. These ids are checked against
the ACLs of znodes when a clients tries to access a node. ACLs are made up of pairs of
(scheme:expression, perms). The format of the expression is specific to the scheme. For
example, the pair (ip:19.22.0.0/16, READ) gives the READ permission to any clients with an
IP address that starts with 19.22.

5.1 ACL Permissions

ZooKeeper supports the following permissions:

• CREATE: you can create a child node
• READ: you can get data from a node and list its children.
• WRITE: you can set data for a node
• DELETE: you can delete a child node
• ADMIN: you can set permissions

The CREATE and DELETE permissions have been broken out of the WRITE permission for
finer grained access controls. The cases for CREATE and DELETE are the following:

You want A to be able to do a set on a ZooKeeper node, but not be able to CREATE or
DELETE children.

CREATE without DELETE: clients create requests by creating ZooKeeper nodes in a parent
directory. You want all clients to be able to add, but only request processor can delete. (This
is kind of like the APPEND permission for files.)

Also, the ADMIN permission is there since ZooKeeper doesn’t have a notion of file owner.
In some sense the ADMIN permission designates the entity as the owner. ZooKeeper doesn’t
support the LOOKUP permission (execute permission bit on directories to allow you to
LOOKUP even though you can't list the directory). Everyone implicitly has LOOKUP
permission. This allows you to stat a node, but nothing more. (The problem is, if you want to
call zoo_exists() on a node that doesn't exist, there is no permission to check.)

ZooKeeper Programmer's Guide

Page 13Copyright © 2008 The Apache Software Foundation. All rights reserved.

5.1.1 Builtin ACL Schemes

ZooKeeeper has the following built in schemes:

• world has a single id, anyone, that represents anyone.
• auth doesn't use any id, represents any authenticated user.
• digest uses a username:password string to generate MD5 hash which is then used as

an ACL ID identity. Authentication is done by sending the username:password in clear
text. When used in the ACL the expression will be the username:base64 encoded SHA1
password digest.

• ip uses the client host IP as an ACL ID identity. The ACL expression is of the form addr/
bits where the most significant bits of addr are matched against the most significant bits
of the client host IP.

5.1.2 ZooKeeper C client API

The following constants are provided by the ZooKeeper C library:

• const int ZOO_PERM_READ; //can read node’s value and list its children
• const int ZOO_PERM_WRITE;// can set the node’s value
• const int ZOO_PERM_CREATE; //can create children
• const int ZOO_PERM_DELETE;// can delete children
• const int ZOO_PERM_ADMIN; //can execute set_acl()
• const int ZOO_PERM_ALL;// all of the above flags OR’d together

The following are the standard ACL IDs:

• struct Id ZOO_ANYONE_ID_UNSAFE; //(‘world’,’anyone’)
• struct Id ZOO_AUTH_IDS;// (‘auth’,’’)

ZOO_AUTH_IDS empty identity string should be interpreted as “the identity of the creator”.

ZooKeeper client comes with three standard ACLs:

• struct ACL_vector ZOO_OPEN_ACL_UNSAFE; //
(ZOO_PERM_ALL,ZOO_ANYONE_ID_UNSAFE)

• struct ACL_vector ZOO_READ_ACL_UNSAFE;// (ZOO_PERM_READ,
ZOO_ANYONE_ID_UNSAFE)

• struct ACL_vector ZOO_CREATOR_ALL_ACL; //
(ZOO_PERM_ALL,ZOO_AUTH_IDS)

The ZOO_OPEN_ACL_UNSAFE is completely open free for all ACL: any application
can execute any operation on the node and can create, list and delete its children. The
ZOO_READ_ACL_UNSAFE is read-only access for any application. CREATE_ALL_ACL
grants all permissions to the creator of the node. The creator must have been authenticated by
the server (for example, using “digest” scheme) before it can create nodes with this ACL.

ZooKeeper Programmer's Guide

Page 14Copyright © 2008 The Apache Software Foundation. All rights reserved.

The following ZooKeeper operations deal with ACLs:

• int zoo_add_auth (zhandle_t *zh,const char* scheme,const char* cert, int certLen,
void_completion_t completion, const void *data);

The application uses the zoo_add_auth function to authenticate itself to the server. The
function can be called multiple times if the application wants to authenticate using different
schemes and/or identities.

• int zoo_create (zhandle_t *zh, const char *path, const char *value,int valuelen, const
struct ACL_vector *acl, int flags,char *realpath, int max_realpath_len);

zoo_create(...) operation creates a new node. The acl parameter is a list of ACLs associated
with the node. The parent node must have the CREATE permission bit set.

• int zoo_get_acl (zhandle_t *zh, const char *path,struct ACL_vector *acl, struct Stat
*stat);

This operation returns a node’s ACL info.

• int zoo_set_acl (zhandle_t *zh, const char *path, int version,const struct ACL_vector
*acl);

This function replaces node’s ACL list with a new one. The node must have the ADMIN
permission set.

Here is a sample code that makes use of the above APIs to authenticate itself using the “foo”
scheme and create an ephemeral node “/xyz” with create-only permissions.

Note:

This is a very simple example which is intended to show how to interact with ZooKeeper ACLs
specifically. See .../trunk/src/c/src/cli.c for an example of a C client implementation

#include <string.h>
#include <errno.h>

#include "zookeeper.h"

static zhandle_t *zh;

/**
 * In this example this method gets the cert for your
 * environment -- you must provide
 */
char *foo_get_cert_once(char* id) { return 0; }

/** Watcher function -- empty for this example, not something you should
 * do in real code */
void watcher(zhandle_t *zzh, int type, int state, const char *path,
 void *watcherCtx) {}

ZooKeeper Programmer's Guide

Page 15Copyright © 2008 The Apache Software Foundation. All rights reserved.

int main(int argc, char argv) {
 char buffer[512];
 char p[2048];
 char *cert=0;
 char appId[64];

 strcpy(appId, "example.foo_test");
 cert = foo_get_cert_once(appId);
 if(cert!=0) {
 fprintf(stderr,
 "Certificate for appid [%s] is [%s]\n",appId,cert);
 strncpy(p,cert, sizeof(p)-1);
 free(cert);
 } else {
 fprintf(stderr, "Certificate for appid [%s] not found\n",appId);
 strcpy(p, "dummy");
 }

 zoo_set_debug_level(ZOO_LOG_LEVEL_DEBUG);

 zh = zookeeper_init("localhost:3181", watcher, 10000, 0, 0, 0);
 if (!zh) {
 return errno;
 }
 if(zoo_add_auth(zh,"foo",p,strlen(p),0,0)!=ZOK)
 return 2;

 struct ACL CREATE_ONLY_ACL[] = {{ZOO_PERM_CREATE, ZOO_AUTH_IDS}};
 struct ACL_vector CREATE_ONLY = {1, CREATE_ONLY_ACL};
 int rc = zoo_create(zh,"/xyz","value", 5, &CREATE_ONLY, ZOO_EPHEMERAL,
 buffer, sizeof(buffer)-1);

 /** this operation will fail with a ZNOAUTH error */
 int buflen= sizeof(buffer);
 struct Stat stat;
 rc = zoo_get(zh, "/xyz", 0, buffer, &buflen, &stat);
 if (rc) {
 fprintf(stderr, "Error %d for %s\n", rc, __LINE__);
 }

 zookeeper_close(zh);
 return 0;
}

6 Pluggable ZooKeeper authentication

ZooKeeper runs in a variety of different environments with various different authentication
schemes, so it has a completely pluggable authentication framework. Even the builtin
authentication schemes use the pluggable authentication framework.

To understand how the authentication framework works, first you must understand the two
main authentication operations. The framework first must authenticate the client. This is
usually done as soon as the client connects to a server and consists of validating information

ZooKeeper Programmer's Guide

Page 16Copyright © 2008 The Apache Software Foundation. All rights reserved.

sent from or gathered about a client and associating it with the connection. The second
operation handled by the framework is finding the entries in an ACL that correspond to
client. ACL entries are <idspec, permissions> pairs. The idspec may be a simple string
match against the authentication information associated with the connection or it may be a
expression that is evaluated against that information. It is up to the implementation of the
authentication plugin to do the match. Here is the interface that an authentication plugin must
implement:

public interface AuthenticationProvider {
 String getScheme();
 KeeperException.Code handleAuthentication(ServerCnxn cnxn, byte authData[]);
 boolean isValid(String id);
 boolean matches(String id, String aclExpr);
 boolean isAuthenticated();
}

The first method getScheme returns the string that identifies the plugin. Because we support
multiple methods of authentication, an authentication credential or an idspec will always be
prefixed with scheme:. The ZooKeeper server uses the scheme returned by the authentication
plugin to determine which ids the scheme applies to.

handleAuthentication is called when a client sends authentication information to be
associated with a connection. The client specifies the scheme to which the information
corresponds. The ZooKeeper server passes the information to the authentication
plugin whose getScheme matches the scheme passed by the client. The implementor of
handleAuthentication will usually return an error if it determines that the information is
bad, or it will associate information with the connection using cnxn.getAuthInfo().add(new
Id(getScheme(), data)).

The authentication plugin is involved in both setting and using ACLs. When an ACL is set
for a znode, the ZooKeeper server will pass the id part of the entry to the isValid(String
id) method. It is up to the plugin to verify that the id has a correct form. For example,
ip:172.16.0.0/16 is a valid id, but ip:host.com is not. If the new ACL includes an "auth"
entry, isAuthenticated is used to see if the authentication information for this scheme that
is assocatied with the connection should be added to the ACL. Some schemes should not
be included in auth. For example, the IP address of the client is not considered as an id that
should be added to the ACL if auth is specified.

ZooKeeper invokes matches(String id, String aclExpr) when checking an ACL. It needs to
match authentication information of the client against the relevant ACL entries. To find the
entries which apply to the client, the ZooKeeper server will find the scheme of each entry
and if there is authentication information from that client for that scheme, matches(String
id, String aclExpr) will be called with id set to the authentication information that was

ZooKeeper Programmer's Guide

Page 17Copyright © 2008 The Apache Software Foundation. All rights reserved.

previously added to the connection by handleAuthentication and aclExpr set to the id of the
ACL entry. The authentication plugin uses its own logic and matching scheme to determine
if id is included in aclExpr.

There are two built in authentication plugins: ip and digest. Additional plugins can adding
using system properties. At startup the ZooKeeper server will look for system properties
that start with "zookeeper.authProvider." and interpret the value of those properties
as the class name of an authentication plugin. These properties can be set using the -
Dzookeeeper.authProvider.X=com.f.MyAuth or adding entries such as the following in the
server configuration file:

authProvider.1=com.f.MyAuth
authProvider.2=com.f.MyAuth2

Care should be taking to ensure that the suffix on the property is unique. If
there are duplicates such as -Dzookeeeper.authProvider.X=com.f.MyAuth -
Dzookeeper.authProvider.X=com.f.MyAuth2, only one will be used. Also all servers must
have the same plugins defined, otherwise clients using the authentication schemes provided
by the plugins will have problems connecting to some servers.

7 Consistency Guarantees

ZooKeeper is a high performance, scalable service. Both reads and write operations are
designed to be fast, though reads are faster than writes. The reason for this is that in the case
of reads, ZooKeeper can serve older data, which in turn is due to ZooKeeper's consistency
guarantees:

Sequential Consistency
Updates from a client will be applied in the order that they were sent.
Atomicity
Updates either succeed or fail -- there are no partial results.
Single System Image
A client will see the same view of the service regardless of the server that it connects to.
Reliability
Once an update has been applied, it will persist from that time forward until a client
overwrites the update. This guarantee has two corollaries:
1. If a client gets a successful return code, the update will have been applied. On some

failures (communication errors, timeouts, etc) the client will not know if the update
has applied or not. We take steps to minimize the failures, but the only guarantee is
only present with successful return codes. (This is called the monotonicity condition
in Paxos.)

ZooKeeper Programmer's Guide

Page 18Copyright © 2008 The Apache Software Foundation. All rights reserved.

2. Any updates that are seen by the client, through a read request or successful update,
will never be rolled back when recovering from server failures.

Timeliness
The clients view of the system is guaranteed to be up-to-date within a certain time bound.
(On the order of tens of seconds.) Either system changes will be seen by a client within
this bound, or the client will detect a service outage.

Using these consistency guarantees it is easy to build higher level functions such as leader
election, barriers, queues, and read/write revocable locks solely at the ZooKeeper client (no
additions needed to ZooKeeper). See Recipes and Solutions for more details.

Note:

Sometimes developers mistakenly assume one other guarantee that ZooKeeper does not in fact make.
This is:

Simultaneously Consistent Cross-Client Views
ZooKeeper does not guarantee that at every instance in time, two different clients will have
identical views of ZooKeeper data. Due to factors like network delays, one client may perform
an update before another client gets notified of the change. Consider the scenario of two clients,
A and B. If client A sets the value of a znode /a from 0 to 1, then tells client B to read /a, client
B may read the old value of 0, depending on which server it is connected to. If it is important
that Client A and Client B read the same value, Client B should should call the sync() method
from the ZooKeeper API method before it performs its read.

So, ZooKeeper by itself doesn't guarantee that changes occur synchronously across all servers,
but ZooKeeper primitives can be used to construct higher level functions that provide useful
client synchronization. (For more information, see the ZooKeeper Recipes. [tbd:..]).

8 Bindings

The ZooKeeper client libraries come in two languages: Java and C. The following sections
describe these.

8.1 Java Binding

There are two packages that make up the ZooKeeper Java binding: org.apache.zookeeper
and org.apache.zookeeper.data. The rest of the packages that make up ZooKeeper are used
internally or are part of the server implementation. The org.apache.zookeeper.data package
is made up of generated classes that are used simply as containers.

The main class used by a ZooKeeper Java client is the ZooKeeper class. Its two constructors
differ only by an optional session id and password. ZooKeeper supports session recovery
accross instances of a process. A Java program may save its session id and password to stable
storage, restart, and recover the session that was used by the earlier instance of the program.

recipes.html
recipes.html

ZooKeeper Programmer's Guide

Page 19Copyright © 2008 The Apache Software Foundation. All rights reserved.

When a ZooKeeper object is created, two threads are created as well: an IO thread and an
event thread. All IO happens on the IO thread (using Java NIO). All event callbacks happen
on the event thread. Session maintenance such as reconnecting to ZooKeeper servers and
maintaining heartbeat is done on the IO thread. Responses for synchronous methods are also
processed in the IO thread. All responses to asynchronous methods and watch events are
processed on the event thread. There are a few things to notice that result from this design:

• All completions for asynchronous calls and watcher callbacks will be made in order,
one at a time. The caller can do any processing they wish, but no other callbacks will be
processed during that time.

• Callbacks do not block the processing of the IO thread or the processing of the
synchronous calls.

• Synchronous calls may not return in the correct order. For example, assume a client does
the following processing: issues an asynchronous read of node /a with watch set to true,
and then in the completion callback of the read it does a synchronous read of /a. (Maybe
not good practice, but not illegal either, and it makes for a simple example.)

Note that if there is a change to /a between the asynchronous read and the synchronous
read, the client library will receive the watch event saying /a changed before the response
for the synchronous read, but because the completion callback is blocking the event
queue, the synchronous read will return with the new value of /a before the watch event
is processed.

Finally, the rules associated with shutdown are straightforward: once a ZooKeeper object is
closed or receives a fatal event (SESSION_EXPIRED and AUTH_FAILED), the ZooKeeper
object becomes invalid. On a close, the two threads shut down and any further access on
zookeeper handle is undefined behavior and should be avoided.

8.1.1 Client Configuration Parameters

The following list contains configuration properties for the Java client. You can set any
of these properties using Java system properties. For server properties, please check the
following reference Server configuration section.

zookeeper.sasl.client
Set the value to false to disable SASL authentication. Default is true.
zookeeper.sasl.clientconfig
Specifies the context key in the JAAS login file. Default is "Client".
zookeeper.sasl.client.username
Traditionally, a principal is divided into three parts: the primary, the instance, and the
realm. The format of a typical Kerberos V5 principal is primary/instance@REALM.
zookeeper.sasl.client.username specifies the primary part of the server principal. Default
is "zookeeper". Instance part is derived from the server IP. Finally server's principal is

zookeeperAdmin.html#sc_configuration

ZooKeeper Programmer's Guide

Page 20Copyright © 2008 The Apache Software Foundation. All rights reserved.

username/IP@realm, where username is the value of zookeeper.sasl.client.username, IP
is the server IP, and realm is the value of zookeeper.server.realm.
zookeeper.server.realm
Realm part of the server principal. By default it is the client principal realm.
zookeeper.disableAutoWatchReset
This switch controls whether automatic watch resetting is enabled. Clients automatically
reset watches during session reconnect by default, this option allows the client to turn off
this behavior by setting zookeeper.disableAutoWatchReset to true.
jute.maxbuffer
It specifies the maximum size of the incoming data from the server. The default value
is 4194304 Bytes , or just 4 MB. This is really a sanity check. The ZooKeeper server is
designed to store and send data on the order of kilobytes. If incoming data length is more
than this value, an IOException is raised.
zookeeper.kinit
Specifies path to kinit binary. Default is "/usr/bin/kinit".

8.2 C Binding

The C binding has a single-threaded and multi-threaded library. The multi-threaded library
is easiest to use and is most similar to the Java API. This library will create an IO thread and
an event dispatch thread for handling connection maintenance and callbacks. The single-
threaded library allows ZooKeeper to be used in event driven applications by exposing the
event loop used in the multi-threaded library.

The package includes two shared libraries: zookeeper_st and zookeeper_mt. The former only
provides the asynchronous APIs and callbacks for integrating into the application's event
loop. The only reason this library exists is to support the platforms were a pthread library
is not available or is unstable (i.e. FreeBSD 4.x). In all other cases, application developers
should link with zookeeper_mt, as it includes support for both Sync and Async API.

8.2.1 Installation

If you're building the client from a check-out from the Apache repository, follow the steps
outlined below. If you're building from a project source package downloaded from apache,
skip to step 3.
1. Run ant compile_jute from the ZooKeeper top level directory (.../trunk).

This will create a directory named "generated" under .../trunk/src/c.
2. Change directory to the.../trunk/src/c and run autoreconf -if to bootstrap

autoconf, automake and libtool. Make sure you have autoconf version 2.59 or greater
installed. Skip to step 4.

ZooKeeper Programmer's Guide

Page 21Copyright © 2008 The Apache Software Foundation. All rights reserved.

3. If you are building from a project source package, unzip/untar the source tarball and cd to
the zookeeper-x.x.x/src/c directory.

4. Run ./configure <your-options> to generate the makefile. Here are some of
options the configure utility supports that can be useful in this step:

• --enable-debug

Enables optimization and enables debug info compiler options. (Disabled by default.)
• --without-syncapi

Disables Sync API support; zookeeper_mt library won't be built. (Enabled by
default.)

• --disable-static

Do not build static libraries. (Enabled by default.)
• --disable-shared

Do not build shared libraries. (Enabled by default.)

Note:

See INSTALL for general information about running configure.

5. Run make or make install to build the libraries and install them.
6. To generate doxygen documentation for the ZooKeeper API, run make doxygen-

doc. All documentation will be placed in a new subfolder named docs. By default, this
command only generates HTML. For information on other document formats, run ./
configure --help

8.2.2 Building Your Own C Client

In order to be able to use the ZooKeeper API in your application you have to remember to
1. Include ZooKeeper header: #include <zookeeper/zookeeper.h
2. If you are building a multithreaded client, compile with -DTHREADED compiler flag

to enable the multi-threaded version of the library, and then link against against the
zookeeper_mt library. If you are building a single-threaded client, do not compile with -
DTHREADED, and be sure to link against the zookeeper_st library.

Note:

See .../trunk/src/c/src/cli.c for an example of a C client implementation

ZooKeeper Programmer's Guide

Page 22Copyright © 2008 The Apache Software Foundation. All rights reserved.

9 Building Blocks: A Guide to ZooKeeper Operations

This section surveys all the operations a developer can perform against a ZooKeeper server.
It is lower level information than the earlier concepts chapters in this manual, but higher level
than the ZooKeeper API Reference. It covers these topics:

• Connecting to ZooKeeper

9.1 Handling Errors

Both the Java and C client bindings may report errors. The Java client binding does so by
throwing KeeperException, calling code() on the exception will return the specific error
code. The C client binding returns an error code as defined in the enum ZOO_ERRORS.
API callbacks indicate result code for both language bindings. See the API documentation
(javadoc for Java, doxygen for C) for full details on the possible errors and their meaning.

9.2 Connecting to ZooKeeper

9.3 Read Operations

9.4 Write Operations

9.5 Handling Watches

9.6 Miscelleaneous ZooKeeper Operations

10 Program Structure, with Simple Example

[tbd]

11 Gotchas: Common Problems and Troubleshooting

So now you know ZooKeeper. It's fast, simple, your application works, but wait ...
something's wrong. Here are some pitfalls that ZooKeeper users fall into:
1. If you are using watches, you must look for the connected watch event. When a

ZooKeeper client disconnects from a server, you will not receive notification of changes
until reconnected. If you are watching for a znode to come into existance, you will miss
the event if the znode is created and deleted while you are disconnected.

2. You must test ZooKeeper server failures. The ZooKeeper service can survive failures
as long as a majority of servers are active. The question to ask is: can your application
handle it? In the real world a client's connection to ZooKeeper can break. (ZooKeeper

ZooKeeper Programmer's Guide

Page 23Copyright © 2008 The Apache Software Foundation. All rights reserved.

server failures and network partitions are common reasons for connection loss.) The
ZooKeeper client library takes care of recovering your connection and letting you know
what happened, but you must make sure that you recover your state and any outstanding
requests that failed. Find out if you got it right in the test lab, not in production - test with
a ZooKeeper service made up of a several of servers and subject them to reboots.

3. The list of ZooKeeper servers used by the client must match the list of ZooKeeper servers
that each ZooKeeper server has. Things can work, although not optimally, if the client
list is a subset of the real list of ZooKeeper servers, but not if the client lists ZooKeeper
servers not in the ZooKeeper cluster.

4. Be careful where you put that transaction log. The most performance-critical part of
ZooKeeper is the transaction log. ZooKeeper must sync transactions to media before
it returns a response. A dedicated transaction log device is key to consistent good
performance. Putting the log on a busy device will adversely effect performance. If you
only have one storage device, put trace files on NFS and increase the snapshotCount; it
doesn't eliminate the problem, but it can mitigate it.

5. Set your Java max heap size correctly. It is very important to avoid swapping. Going
to disk unnecessarily will almost certainly degrade your performance unacceptably.
Remember, in ZooKeeper, everything is ordered, so if one request hits the disk, all other
queued requests hit the disk.

To avoid swapping, try to set the heapsize to the amount of physical memory you have,
minus the amount needed by the OS and cache. The best way to determine an optimal
heap size for your configurations is to run load tests. If for some reason you can't, be
conservative in your estimates and choose a number well below the limit that would
cause your machine to swap. For example, on a 4G machine, a 3G heap is a conservative
estimate to start with.

Outside the formal documentation, there're several other sources of information for
ZooKeeper developers.

ZooKeeper Whitepaper [tbd: find url]
The definitive discussion of ZooKeeper design and performance, by Yahoo! Research
API Reference [tbd: find url]
The complete reference to the ZooKeeper API
ZooKeeper Talk at the Hadoup Summit 2008
A video introduction to ZooKeeper, by Benjamin Reed of Yahoo! Research
Barrier and Queue Tutorial
The excellent Java tutorial by Flavio Junqueira, implementing simple barriers and
producer-consumer queues using ZooKeeper.
ZooKeeper - A Reliable, Scalable Distributed Coordination System
An article by Todd Hoff (07/15/2008)

http://us.dl1.yimg.com/download.yahoo.com/dl/ydn/zookeeper.m4v
https://cwiki.apache.org/confluence/display/ZOOKEEPER/Tutorial
https://cwiki.apache.org/confluence/display/ZOOKEEPER/ZooKeeperArticles

ZooKeeper Programmer's Guide

Page 24Copyright © 2008 The Apache Software Foundation. All rights reserved.

ZooKeeper Recipes
Pseudo-level discussion of the implementation of various synchronization solutions with
ZooKeeper: Event Handles, Queues, Locks, and Two-phase Commits.
[tbd]
Any other good sources anyone can think of...

recipes.html

	Table of contents
	1 Introduction
	2 The ZooKeeper Data Model
	2.1 ZNodes
	2.1.1 Watches
	2.1.2 Data Access
	2.1.3 Ephemeral Nodes
	2.1.4 Sequence Nodes -- Unique Naming

	2.2 Time in ZooKeeper
	2.3 ZooKeeper Stat Structure

	3 ZooKeeper Sessions
	4 ZooKeeper Watches
	4.1 What ZooKeeper Guarantees about Watches
	4.2 Things to Remember about Watches

	5 ZooKeeper access control using ACLs
	5.1 ACL Permissions
	5.1.1 Builtin ACL Schemes
	5.1.2 ZooKeeper C client API

	6 Pluggable ZooKeeper authentication
	7 Consistency Guarantees
	8 Bindings
	8.1 Java Binding
	8.1.1 Client Configuration Parameters

	8.2 C Binding
	8.2.1 Installation
	8.2.2 Building Your Own C Client

	9 Building Blocks: A Guide to ZooKeeper Operations
	9.1 Handling Errors
	9.2 Connecting to ZooKeeper
	9.3 Read Operations
	9.4 Write Operations
	9.5 Handling Watches
	9.6 Miscelleaneous ZooKeeper Operations

	10 Program Structure, with Simple Example
	11 Gotchas: Common Problems and Troubleshooting

